Location: Crop Bioprotection Research
Project Number: 5010-22410-017-000-D
Project Type: In-House Appropriated
Start Date: Oct 1, 2015
End Date: Sep 13, 2020
Objective:
Objective 1. Utilizing transcriptomics to link gene function to fungal morphogenesis, develop liquid culture methods for producing propagules of fungal biocontrol agents such as Metarhizium spp., Beauveria bassiana, and Mycoleptodiscus terrestris by optimizing nutritional and environmental conditions during fungal growth for optimal biocontrol efficacy and storage stability to control pests in agricultural, urban, and natural ecosystems.
Objective 2. Develop novel fungal formulation technologies through the selection and application of innovative processes and ingredients that lead to improved storage stability, product delivery, field stability, and efficacy of fungal pathogens for biocontrol of insects [Beauveria bassiana, Metarhizium spp., and Isaria fumosorosea] and weeds [Mycoleptodiscus terrestris].
Subobjective 2A: Evaluate the compatibility of improved entomopathogen formulations with representative corn pest resistance mechanisms for control of sweet corn pests.
Objective 3. Identify, chemically and behaviorally characterize, and deploy natural insect semiochemicals (pheromones/kairomones and plant volatiles) with microbial biocontrol agents for management of important agricultural insect pests such as brown marmorated stink bug and coffee berry borer.
Approach:
Our approach to the development of production methods for fungal biocontrol agents will focus on the use of liquid fermentation techniques. We will identify defined or semi-defined media that support the growth of our fungal biocontrol agents. Propagule form yield, storage stability, and biocontrol efficacy are critical “fitness” factors that will be considered during medium optimization. Initially, we will focus on producing propagules of fungal biocontrol agents such as Metarhizium spp, Beauveria bassiana, and Mycoleptodiscus terrestris. We also will use transcriptomics to identify pathways that may impact these factors. We will evaluate the impact of culture harvest techniques, stabilization processes, and formulation ingredients on the physical characteristics, biological activity, storage stability, and field efficacy of selected biocontrol agents. Also, we will identify and chemically characterize insect attractants and deterrents and evaluate formulations for management of important agricultural insect pests such as the brown marmorated stink bug, coffee berry borer, polyphagous shot hole borer, and tea shot hole borer.