Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BARC) » Beltsville Agricultural Research Center » Adaptive Cropping Systems Laboratory » Research » Research Project #431799

Research Project: Developing Practices for Nutrient and Byproducts to Mitigate Climate Change, Improve Nutrient Utilization, and Reduce Effects on Environment

Location: Adaptive Cropping Systems Laboratory

2020 Annual Report


Objectives
Objective 1: Develop strategies using cover cropping and biosolids management to mitigate green-house gas (GHG) emissions and improve soil health. 1.A) Evaluate soil carbon (C) sequestration with cover crops to mitigate GHG emissions. 1.B) Evaluate the ability of biosolids management strategies to sequester C and thereby reduce GHG emissions. Objective 2: Develop strategies for managing fertilizer-N in cropping systems and manure NH3-N in high-residue tillage systems, to improve N-use efficiency and air quality. 2.A) Conduct field crop research with a corn-wheat-soybean rotation to evaluate 15N uptake efficiencies of genetically modified corn, conservation of N by cover crops, and soybean N2 fixation. 2.B) Evaluate and develop best management practices for reducing ammonia volatilization and to estimate ammonia losses from manures. Objective 3: Improve descriptions of biological mechanisms controlling bioactive P release to soils, and develop improved fate models and conservation practices to enhance P use efficiency. 3.A) Evaluate nutrient conservation practices based on enhanced understanding of rhizosphere microbiology and enzymology that regulate the release of bioactive manure-P and soil-P to crops and soil. 3.B) Evaluate relevance of current algorithms in use to include rhizosphere microbiology and enzymology processes when modeling P behavior and transport in APEX and similar models. Objective 4: Develop beneficial uses of agricultural, industrial, and municipal byproducts to enhance crop production and reduce risks to the environment from potential contaminants. 4.A) Conduct phytostabilization research using mixtures of organic resources with byproducts and alkaline amendments to achieve functional remediation and revegetation of barren and biologically dead metal contaminated soils. 4.B) Conduct phytoextraction/phytomining research to identify effective plant species and optimize the agronomic productivity of phytoextraction technologies. 4.C) Conduct research and risk evaluation to assess the risks and benefits from use of industrial, municipal and agricultural byproducts to improve crop production and reduce risk to the environment from byproduct constituents. 4.D) Investigate the use of mixtures of organic amendments, limestone byproducts, flue gas desulfurization gypsum and leachable alkalinity to correct subsoil acidity and improve soil fertility.


Approach
Obj. 1A. A replicated six-year field experiment will be completed to evaluate the rate and quantity of carbon sequestrated by winter cover-crops of rye, hairy vetch, and a rye plus hairy vetch mixture, as compared to a traditional no-cover condition. These data will assess and develop agricultural practices for mitigating global warming. Obj. 1B. Agricultural use of biosolids could improve soil carbon sequestration and thereby reduce greenhouse-gas emissions. Replicated field research will be conducted on plots previously treated with different rates and types of biosolids, to determine if biosolids can increase soil carbon sequestration. Obj. 2A. Labeled nitrogen fertilizer will be used in a corn-wheat-soybean rotation to evaluate nitrogen use efficiencies of genetically modified and non-modified corn, to measure conservation of corn residual fertilizer by winter-wheat, and to estimate nitrogen fixation of double-crop soybeans. Improving nitrogen use efficiency will reduce nitrogen losses to the environment while maintaining profitability. Obj. 2B. Ammonia volatilization is a major loss of plant-available nitrogen from surface applied manures. A series of wind tunnel field studies will be conducted to evaluate the ability of new high-residue tillage implements to conserve ammonia, but still maintain surface residues to control erosion. Obj. 3A. Laboratory incubation-fractionation studies will be conducted to mathematically describe phosphorus transformations and availability in manured soils. These results will assess the advantages and disadvantages of adding organic-phosphorus turnover to existing models. Obj. 3B. A critical evaluation of phosphorus transformation and transport modules within existing phosphorus models will be conducted by validation against long-term field and simulated rainfall studies. The evaluation will focus on the use of rhizosphere microbiology and enzymology for modeling phosphorus. Obj. 4A. Two field locations will be studied using various mixtures of industrial, municipal, and agricultural byproducts to remediate and revegetate barren and heavy-metal contaminated soils. The studies will monitor plant yield and composition to assess byproduct performance and possible risks to wildlife. Obj. 4B. Growth chamber and greenhouse research on phyto-mining will use various fertilizer nutrients and topsoil/subsoil combinations to identify plant species and management practices that optimize agronomic productivity and that extract nickel from nickel-rich soils. Obj. 4C. A two-year field study will be conducted in Appalachia comparing the uptake of nutrients and metals by peanut and wheat from additions of poultry litter, flue gas desulfurization gypsum, and mined gypsum. A risk assessment on the use of flue gas desulfurization gypsum and mined gypsum in U.S. soils will also be done. Obj. 4D. A greenhouse study will be conducted to evaluate mixtures of organic amendments, limestone byproducts, flue gas desulfurization gypsum, and leachable alkalinity to correct subsoil acidity for alfalfa. Subsoil acidity commonly limits rooting depth in soils across the mid-Atlantic and Southern regions of the U.S..


Progress Report
Obj. 1A. No progress to report due to SY retirement. Obj. 1B. In support of Objective 1B, the four-year study of long-term biosolids effects on soil carbon and metal concentrations was completed and Manuscript is being written for submission to peer review Journal. 1. Methods to estimate mesophyll conductance. Measuring plant photosynthetic response is an important component of agronomic research studies. To improve this measurement technique, scientists developed three methods that can estimate mesophyll conductance to CO2 movement within two plant species. The three methods were oxygen sensitivity of photosynthesis, variable J fluorescence combined with gas exchange and the curvature of the Rubisco-limited CO2 assimilation rate (A) vs. sub-stomatal CO2 concentrations (Ci) curve. The Rubisco-limited A vs. Ci curve method is a method for rapidly obtaining data points for the Rubisco-limited A vs. Ci curve. These results can be used by any science conducting research on the relationships between environment, soil, and plant productivity and genetics. Obj. 2A. No progress to report due to SY retirement. Obj. 2B. No progress to report due to SY retirement. Obj. 3A. No progress to report due to SY retirement. Obj. 3B. No progress to report due to SY retirement. Obj. 4A. No progress to report due to SY retirement. Obj. 4B. No progress to report due to SY retirement. Obj. 4C 1. In support of Objective 4C 1 the fourth year of the four-year study was completed, in collaboration with an ARS scientist at Auburn, Alabama. Statistical analysis is being conducted on the four years of plant data in preparation for manuscript. Obj. 4C 2. No progress to report due to SY retirement. Obj. 4D. In support of Objective 4D, we conducted a column study to determine the amelioration of subsoil acidity using industrial and agricultural byproducts and alfalfa as the test crop. Alfalfa was harvested, plant tissue and soil samples were analyzed for nutrients and metals. Statistical analysis of the data has been completed and manuscript is being prepare for submission to peer review Journal. Obj. 4D. In support of Objective 4D. We conducted an experiment to determine the effects of byproducts amended urban soils on uptake of nutrients and metals by herbs. Plants were harvested but due to the FY2020 Maximized Telework analysis on the soil and plant tissue were not completed.


Accomplishments


Review Publications
Hirpassa, W., Codling, E.E. 2019. Growth and metal uptake of lettuce [Lactuca Sativa L] on soil amended with biosolids and gypsum. Communications in Soil Science and Plant Analysis. 50:2033-2040.
Codling, E.E., Schmidt, M.E., Schmidt, W.F., Huda, M.S. 2019. Keratin nursery pots as potential medium for controlled release of copper ions in root growth control in Theobroma cacao, L. Journal of Horticulture. 6:256.
Allen, L.H., Kimball, B.A., Bunce, J.A., Toshimoto, M., Harazono, Y., Baker, J.T., Boote, K.J., White, J.W. 2020. Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant photosynthesis, growth, and yield. Agricultural and Forest Meteorology. 284. https://doi.org/10.1016/j.agrformet.2020.107899.
Bunce, J.A. 2019. Differences in leaf water use efficiency among soybean cultivars not well correlated with carbon isotope ratios. Plants. 8(5):123. https://doi.org/10.3390/plants8050123.
Bunce, J.A. 2018. Evidence of adaptation to recent changes in atmospheric CO2 in four weedy species. Plants. 7(1):12. https://doi.org/10.3390/plants7010012.
Bunce, J.A. 2018. Three methods of estimating mesophyll conductance agree regarding its CO2 sensitivity in the Rubisco-limited Ci range. Plants. 7(3):62. https://doi.org/10.3390/plants7030062.