Skip to main content
ARS Home » Midwest Area » Urbana, Illinois » Soybean/maize Germplasm, Pathology, and Genetics Research » Research » Research Project #432114

Research Project: Integrated Management of Soybean Pathogens and Pests

Location: Soybean/maize Germplasm, Pathology, and Genetics Research

Project Number: 5012-22000-022-000-D
Project Type: In-House Appropriated

Start Date: Apr 30, 2017
End Date: Apr 29, 2022

Objective:
Objective 1. Relate the spatial and temporal dynamics of soybean pathogens, pests, and associated microbial communities to soybean productivity. Subobjective 1.A. Determine if novel virulent or resistance-breaking soybean pathogens/pests have emerged within the U.S. and other parts of the world. Subobjective 1.B. Determine the impact of selected biocontrol and beneficial microbes to reduce the impact of soybean pathogens and pests. Subobjective 1.C. Characterize variability and shifts in the pathogenicity of Phakopsora pachyrhizi populations in the southern U.S. to guide breeding program decisions. Objective 2: Identify, characterize, and develop improved resistance in soybean that can be used for sustainable disease management strategies that include effective host resistance and biological control. Subobjective 2.A. Identify or characterize pathogen/pest resistance using annual and perennial accessions from the USDA Soybean Germplasm Collection and selected breeding lines. Subobjective 2.B. Develop agronomically competitive soybean breeding lines with disease- or pest-resistance genes from adapted or unadapted germplasm accessions in the USDA Soybean Germplasm Collection. Subobjective 2.C. Investigate relationships between soybean yields and resistance to soybean cyst nematode and Phytophthora sojae in public breeding lines from the Northern Uniform/Preliminary Soybean Tests.

Approach:
The distribution and abundance of soybean pathogens and pests will be monitored on multiple geographic scales using pathogen-specific and metagenomic assays. The impacts of beneficial and insect-borne microbes on soybean diseases and yields will be characterized in replicated trials over multiple years. Changes in pathogen virulence over time will be assessed using soybean lines expressing different pathogen resistance genes and pathogen populations collected from soybean fields each year. New sources of resistance to pathogens and pests will be identified and characterized in cultivated soybean and related annual and perennial accessions from the USDA Soybean Germplasm Collection through field and greenhouse evaluations. Regions of soybean chromosomes associated with pathogen/pest resistance will be identified using phenotypic assays and molecular marker analyses of derived mapping populations. Soybean lines shown to be resistant to soybean pathogens/pests will be used to produce breeding lines with enhanced resistance using phenotypic and marker-assisted selection techniques as appropriate.