Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BARC) » Beltsville Agricultural Research Center » Bee Research Laboratory » Research » Research Project #435185

Research Project: Managing Honey Bees against Disease and Colony Stress

Location: Bee Research Laboratory

Project Number: 8042-21000-290-000-D
Project Type: In-House Appropriated

Start Date: Aug 28, 2018
End Date: Apr 23, 2020

Objective:
The overarching goal of the Bee Research Laboratory (BRL) is to provide beekeepers and regulators practical advice for maintaining sustainable honey bee populations for pollination and hive products. BRL will use integrated laboratory and field approaches to develop novel management strategies for 1) diagnosing and mitigating disease, 2) reducing the impacts on bees of pesticides and other environmental chemicals, and 3) improving bee health through better nutrition. Objective 1: Exploit genetic analyses of parasites, pathogens and bee immunity (including gut microbe interactions) to improve diagnosis and management of bee diseases. [NP305, Component 2, Problem Statement 2B] Subobjective 1.A: Manipulate honey bee immune responses toward disease. Subobjective 1.B: Conduct metagenomic analyses to identify novel pathogens and pathogen webs important for bee disease. Subobjective 1.C: Exploit bacterial gut symbionts to defend honey bees against disease. Objective 2: Use genomic information to develop novel controls for mites and other parasites, e.g., controls based on RNAi strategies or that target parasite vulnerabilities. [NP305, Component 2, Problem Statement 2B] Subobjective 2.A: Produce genome-led control strategies against Varroa mites. Subobjective 2.B: Develop gene-based control strategies for the gut parasite Nosema ceranae. Subobjective 2.C: Reduce the impacts of mite-transmitted viruses on bee health. Objective 3: Determine the impacts of physiological stress on worker and queen development and longevity, including that caused by overwintering and unbalanced diets. [NP305, Component 2, Problem Statement 2A] Subobjective 3.A: Determine the impacts of nutritional components on behavioral development, immune response and susceptibility to disease. Subobjective 3.B: Determine the effects of dietary fatty acids (FAs) on honey bee colony survival. Subobjective 3.C: Improve queen fecundity and longevity through better nutrition. Objective 4: Identify key impacts of in-hive and environmental pesticides on bee health, including sub-lethal effects and interactions with bee pathogens. [NP305, Component 2, Problem Statement 2B] Subobjective 4.A: Define synergisms between chemical exposure and disease. Subobjective 4.B: Determine whether pesticide exposure increases oxidative stress in honey bees, and if so, develop means to reduce the potential negative effects of oxidative damage to honey bees. Subobjective 4.C: Determine the effects of pesticides on honey bee basal metabolic rate (BMR). Objective 5: Develop and test hive-level treatments against mites and other bee threats. [NP305, Component 2, Problem Statement 2B] Subobjective 5.A: Develop best practices for resource availability, mite control, and colony health for migratory commercial beekeepers. Subobjective 5.B: Develop colony management strategies for improved queen health.

Approach:
Research at the Bee Research Laboratory (BRL) focuses on using microbiological, genomic, physiological, and toxicological approaches to improve the management of bee diseases and parasites, with a mission to develop innovative tools that can be used by beekeepers to build and maintain healthy bee populations. Integrated laboratory and field approaches will be used to develop novel management strategies for 1) diagnosing and mitigating disease, 2) reducing the impacts on bees of pesticides and other environmental chemicals, and 3) improving bee health through better nutrition.