Skip to main content
ARS Home » Pacific West Area » Maricopa, Arizona » U.S. Arid Land Agricultural Research Center » Plant Physiology and Genetics Research » Research » Research Project #435645

Research Project: Analysis and Quantification of G x E x M Interactions for Sustainable Crop Production

Location: Plant Physiology and Genetics Research

Project Number: 2020-11000-013-000-D
Project Type: In-House Appropriated

Start Date: Oct 24, 2018
End Date: Oct 23, 2023

Objective:
Objective 1: Improve ecophysiological models for quantitative prediction of G x E x M. Sub-objective 1A: Models improved with respect to their ability to simulate phenology and canopy architecture from genetic information. Sub-objective 1B: Models improved with respect to simulating crop responses to energy and water balances. Sub-objective 1C: Models assessed to understand how improved responses to energy and water balances affect cropping system responses. Objective 2: Characterize the temperature response of agronomic crops using an exceptionally wide range of natural air temperatures. Sub-objective 2A: Responses of cereal crops to temperature characterized using an exceptionally wide range of natural air temperatures emphasizing near-lethal high temperatures under well-watered conditions. Sub-objective 2B: Responses of cereal crops to temperature characterized by combining deficit irrigation and an exceptionally wide range of natural air temperatures. Objective 3: Develop tools for proximal sensing and remote sensing for improved quantification of crop growth. Sub-objective 3A: Tools developed for assessing crop architecture and light interception through proximal and remote sensing. Sub-objective 3B: Tools developed for quantifying the conversion of intercepted radiation to biomass via proximal and remote sensing. Sub-objective 3C: Tools developed for assessing partitioning of vegetative and reproductive growth via proximal and remote sensing.

Approach:
Objective 1: To improve ecophysiological models that quantify crop responses to G x E x M, the project will strengthen simulation of phenology, canopy architecture, and crop energy balances (CEB) and water balances (CWB). Targeting common bean, soybean and sorghum, research on phenology and architecture focuses on improving how genetic differences within a crop species are represented in existing models such as the Cropping Systems Model (CSM). The work exploits large phenotypic datasets from multiple environment trials, linked to data on daily weather conditions, crop management and crop genetics. Improved simulation of crop energy and water balances should benefit overall simulation of cropping systems. To improve calculation of the three-source (sunlit and shaded leaves, soil surface) CEB as implemented in the CSM, planned work will ensure that crop and soil temperatures estimated are correctly transferred to routines for other temperature-sensitive processes and calculation of the CEB is numerically stable. Improved calculation of the CWB builds on comparisons of over 30 maize models (including CSM), which we lead as part of the global Agricultural Model Intercomparison and Improvement Project. This work will identify approaches providing the best estimates of crop water use and indicate how model calibration affects CWB estimates. Objective 2: Through detailed monitoring of crop growth and development, field trials will be used to compare responses of cereal crops to thermal stress at near-lethal and lethal temperatures. This will provide a unique dataset to analyze how temperature affects multiple processes of crop growth and development. Four spring cereals (bread wheat, durum wheat, barley and triticale) will be sown on sequential dates that expose the crops to the exceptionally high mid-day air temperatures. In a second phase, a water deficit treatment will augment the range of temperatures experienced by the four crops as well as allow characterizing how temperature and water deficits interact to affect cereals at near-lethal temperatures. Objective 3: Crop models require high quality data on growth, novel sensor systems will be used to monitor growth at lower cost, higher accuracy and higher throughput than previously possible. This builds on advances in high throughput phenotyping, which is usually associated with genetic research but is applicable to many aspects of crop research. The focus is to analyze data from the Transportation Energy Resources from Renewable Agriculture Phenotyping Reference Platform (TERRA REF) field scanner to quantify growth of sorghum and wheat using a conceptual framework of light interception and radiation use efficiency. The first year, four seasons each of sorghum and durum diversity panels will have been variously scanned with stereo cameras, a thermal camera, a 3-D laser scanner and two hyperspectral cameras (covering 400 to 2,500 nanometers) and imaged with unmanned aerial vehicles. In collaboration with image analysts of TERRA REF, we will quantify crop growth and architecture, cross-validating results with light interception, crop height and biomass data from our manual assessments.