Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Bioenergy Research » Research » Research Project #436771

Research Project: Technologies for Improving Process Efficiencies in Biomass Refineries

Location: Bioenergy Research

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates Reprint Icon - (Peer Reviewed Journal)
Mertens, J.A., Skory, C.D., Nichols, N.N., Hector, R.E. 2020. Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates. Biotechnology Progress. 37(2). Article e3094. https://doi.org/10.1002/btpr.3094.

High solids loading biorefinery for the production of cellulosic sugars from bioenergy sorghum Reprint Icon - (Peer Reviewed Journal)
Cheng, M., Kadhum, H., Murthy, G., Dien, B.S., Singh, V. 2020. High solids loading biorefinery for the production of cellulosic sugars from bioenergy sorghum. Bioresource Technology. 318. Article 124051. https://doi.org/10.1016/j.biortech.2020.124051.

Effect of using a nitrogen atmosphere on enzyme hydrolysis at high corn stover loadings in an agitated reactor Reprint Icon - (Peer Reviewed Journal)
Dos Santos, A.C.F., Ximenes, E., Thompson, D.N., Ray, A.E., Szeto, R., Erk, K., Dien, B.S., Ladisch, M.R. 2020. Effect of using a nitrogen atmosphere on enzyme hydrolysis at high corn stover loadings in an agitated reactor. Biotechnology Progress. 36(6). Article e3059. https://doi.org/10.1002/btpr.3059.

Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to ß-carotene using an engineered Saccharomyces cerevisiae Reprint Icon - (Peer Reviewed Journal)
Cheng, M., Sun, L., Jin, Y., Dien, B.S., Singh, V. 2020. Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to ß-carotene using an engineered Saccharomyces cerevisiae. Bioresource Technology. 308. Article 123275. https://doi.org/10.1016/j.biortech.2020.123275.

Recent advances in bioconversion of lignocellulose to biofuels and value added chemicals within the biorefinery concept preface Reprint Icon - (Book / Chapter)
Dien, B.S., Slininger, P.J. 2020. Recent advances in bioconversion of lignocellulose to biofuels and value added chemicals within the biorefinery concept preface. Elsevier. 2020: xv-xvii. https://doi.org/10.1016/B978-0-12-818223-9.00019-9.

Field productivities of Napier grass for production of sugars and ethanol Reprint Icon - (Peer Reviewed Journal)
Dien, B.S., Anderson, W.F., Cheng, M., Knoll, J.E., Lamb, M., O Bryan, P.J., Singh, V., Sorensen, R.B., Strickland, T.C., Slininger, P.J. 2020. Field productivities of Napier grass for production of sugars and ethanol. ACS Sustainable Chemistry & Engineering. 8(4):2052-2060. https://dx.doi.org/10.1021/acssuschemeng.9b06637.

Economic analysis of cellulosic ethanol production from sugarcane bagasse using a sequential deacetylation, hot water and disk-refining pretreatment Reprint Icon - (Peer Reviewed Journal)
Cheng, M., Wang, Z., Dien, B.S., Slininger, P.J., Singh, V. 2019. Economic analysis of cellulosic ethanol production from sugarcane bagasse using a sequential deacetylation, hot water and disk-refining pretreatment. Processes. 7(10): 1-15. https://doi.org/10.3390/pr7100642.