Skip to main content
ARS Home » Research » Publications at this Location » Publication #148532

Title: SUSTAINABILITY OF A PASSIVE FEEDLOT RUNOFF CONTROL SYSTEM USING A VEGETATIVE FILTER STRIP FOR NUTRIENT CONTROL

Author
item Woodbury, Bryan
item Nienaber, John
item Eigenberg, Roger

Submitted to: American Society of Agri Engineers Special Meetings and Conferences Papers
Publication Type: Other
Publication Acceptance Date: 6/1/2003
Publication Date: 7/28/2003
Citation: WOODBURY, B.L., NIENABER, J.A., EIGENBERG, R.A. SUSTAINABILITY OF A PASSIVE FEEDLOT RUNOFF CONTROL SYSTEM USING A VEGETATIVE FILTER STRIP FOR NUTRIENT CONTROL. AMERICAN SOCIETY OF AGRI ENGINEERS SPECIAL MEETINGS AND CONFERENCES PAPERS.

Interpretive Summary: Precipitation runoff from beef cattle feedlots is typically collected and stored in large volume ponds. These ponds are expensive to build, may leak after a few years, and pose a risk to groundwater quality. A runoff control system was designed and built that eliminated the need for storage ponds. The system had a temporary solid storage basin. Liquid was drained by gravity to a grass hay field where water and nutrients were utilized. No runoff was discharged from the grass hay field during the 3-year period, indicating all runoff was used by the crop. Total nitrogen removed by the hay crop equaled or exceeded the amount released from the settling basin. However, some areas in the grass hay field are accumulating nitrogen near the surface. Also, soil analysis in the basin indicates some nitrate is moving downward. These issues will continue to be addressed.

Technical Abstract: Producers are looking for more cost-effective alternatives for controlling feedlot runoff. However, regulating agencies need to know these alternatives will protect the environment. As a result a passive runoff control and treatment system was designed to provide solid separation and eliminate long-term liquid storage. This study was initiated to investigate the sustainability of a debris basin and vegetative filter strip (VFS) for nutrient control. The estimated total nitrogen load entering the VFS was equivalent to or less than the total nitrogen load removed by the crop. No water was measured exiting the VFS, either by deep percolation or by direct release, during the three year study period. As a result, the discharge water from the basin was effectively used for hay crop production. Electromagnetic induction maps were produced to illustrate zones within the VFS where salt and nutrient loading occurred. Soil analysis in these zones indicated that surface soil nitrate-nitrogen levels, particularly closest to the discharge tubes, had increased. Currently nitrogen is contained near the surface, and has not started to infiltrate deeper into the VFS soil. However, nitrate-nitrogen appears to be infiltrating below the debris basin where concentrations as high as 60 mg nitrate-nitrogen per kg of soil were measured to a depth of three meters. Annual removal of the solids and organic material from the debris basin may have compromised sealing of the basin. Continued evaluation of the potential seepage is planned.