Skip to main content
ARS Home » Research » Publications at this Location » Publication #152823

Title: SPATIAL VARIABILITY OF TURBULENT FLUXES ACROSS A CORN/SOYBEAN PRODUCTION REGION IN CENTRAL IOWA

Author
item Prueger, John
item Kustas, William - Bill
item HIPPS, L - UTAH STATE UNIVERSITY
item Hatfield, Jerry
item CAHILL, A - TEXAS A&M UNIVERSITY
item WILLIAMS, C - UNIVERSITY OF VIRGINIA
item ALBERTSON, J - DUKE UNIVERSITY
item EICHINGER, W - UNIVERSITY OF IOWA
item COOPER, D - LOS ALAMOS NATIONAL LAB
item BRUNSELL, N - UTAH STATE UNIVERSITY

Submitted to: American Meteorological Society Proceedings
Publication Type: Proceedings
Publication Acceptance Date: 8/26/2004
Publication Date: 8/26/2004
Citation: Prueger, J.H., Kustas, W.P., Hipps, L.E., Hatfield, J.L., Cahill, A., Williams, C., Albertson, J., Eichinger, W.E., Cooper, D.I., Brunsell, N. 2004. Spatial variability of turbulent fluxes across a corn/soybean production region in central Iowa [CD-ROM]. In: American Meteorological Society Proceedings. 26th Conference on Agriculture and Forest Meterology, August 23-27, 2004. Boston, Massachusetts.

Interpretive Summary:

Technical Abstract: The Walnut Creek Watershed near Ames, Iowa is a typical corn/soybean production region of the Upper Midwest Corn Belt of the United States. This region comprises an area of over 40 million hectares of corn/soybean farming rotation mostly dependent on summer convective precipitation events for production water supply. Intuitively, intensively managed cropping systems bring to mind homegeneous surfaces and thus relatively uniform exchanges of heat, water, and carbon dioxide. However a number of factors can induce significant differences in exchange rates of turbulent fluxes across a corn/soybean production landscape. These can include soil variability, surface topography, seed variety, different planting dates, soil water contents, variability in precipitation amounts and local microclimate conditions. As part of the Soil Moisture-Atmosphere Coupling Experiment (SMACEX) conducted in the Walnut Creek Watershed over the period from June 15-July 13, 2002 an intensive network of eddy covariance stations were installed across the watershed to measure sensible and latent heat fluxes as well as carbon dioxide fluxes over corn and soybean production fields. Approximately an equal number of stations were deployed over corn and soybeans and in fields representing a diversity of soil types, topography and planting densities. In addition to each site, ancillary measurements of net radiation, soil heat flux and soil temperatures, air temperature and humidity as well as radiometric temperatures of soil and plant canopies were made. Results will show considerable variation in energy exchange rates across the watershed as a function soil variability, landscape position, management practice and precipitation distribution.