Author
Shapiro Ilan, David | |
STUART, ROBIN - UNIVERSITY OF FLORIDA | |
MCCOY, CLAYTON - UNIVERSITY OF FLORIDA |
Submitted to: Journal of Nematology
Publication Type: Abstract Only Publication Acceptance Date: 4/10/2005 Publication Date: N/A Citation: N/A Interpretive Summary: The pecan weevil is a key pest of pecans. We are seeking new environmentally friendly methods of controlling this pest. Insect-killing nematodes (small round worms) are one control method we are investigating. The nematodes kill insect pests with the help of bacteria that are carried inside the nematode. The nematodes and bacteria don’t harm people or the environment. The nematode’s success in killing pecan weevils relies on which strain is used. We are developing improved nematode strains for pecan weevil control. In this study, we created superior strains by matching the best bacteria with the best nematode, and by hybridizing the strains (i.e., controlled mating). The new improved strains exhibited high levels of virulence (killing power) as well as a high degree of tolerance to heat and desiccation. These strains will now be field tested to determine their efficacy under field conditions. Technical Abstract: The entomopathogenic nematode Steinernema carpocapsae has shown promise for control of adult stage pecan weevil, Curculio caryae, a key pest of pecan. Our objective was to determine the feasibility of developing improved strains of S. carpocapsae by transferring the nematode’s bacterial symbiont (Xenorhabdus nematophila) from the Italian strain (which is highly virulent but has poor environmental tolerance) to the less virulent but more environmentally tolerant DD-136 strain, and through hybridization between the two wild type nematodes. Three modified strains were created: one through bacterial transfer alone and two hybrids through controlled crosses. We hypothesized that the improvement approaches would result in strains possessing high levels of heat and desiccation tolerance similar to DD-136 and virulence similar to the Italian strain. The hypothesis was supported in two out of three modified strains. Overall, the results indicate that bacterial transfer and hybridization could be a valuable tool in improving biocontrol efficacy of steinernematids. |