Skip to main content
ARS Home » Pacific West Area » Salinas, California » Crop Improvement and Protection Research » Research » Publications at this Location » Publication #255567

Title: Methods for detection and differentiation of existing and new crinivirus species through multiplex and degenerate primer RT-PCR.

Author
item Wintermantel, William - Bill
item Hladky, Laura

Submitted to: Journal of Virological Methods
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 9/2/2010
Publication Date: 9/15/2010
Citation: Wintermantel, W.M., Hladky, L.L. 2010. Methods for detection and differentiation of existing and new crinivirus species through multiplex and degenerate primer RT-PCR. Journal of Virological Methods. 170(1-2):106-114.

Interpretive Summary: A method was developed for rapid identification and differentiation of both known and novel crinivirus species involving both multiplex and degenerate reverse transcription-polymerase chain reaction (RT-PCR). The multiplex method can discriminate among known criniviruses infecting vegetable and small fruit crops, and rapidly identify viruses associated with disease symptoms, as well as identification of mixed crinivirus infections. For multiplex detection host detection groups were selected based on the types of crops where specific criniviruses would be expected to occur. Each detection group contained three to four crop-specific primer sets designed to the same region of the gene encoding the highly conserved RNA-dependent RNA polymerase gene (RdRp) of criniviruses for rapid, single-reaction determination of which crinivirus(es) may be infecting a plant. Degenerate reverse primers used for RT and in PCR were designed to amplify all members of each host group, and were coupled with species-specific forward primers resulting in four separate single-reaction cocktails for detection of most criniviruses sequenced to date, whether present in single or mixed virus infections. Additional viruses can be added to multiplex detection by adjustment of primer concentration for balanced detection of target viruses. In order to identify unknown putative criniviruses or those for which sequence information is not yet available, a genus-wide, universal degenerate primer set was developed. These primers also targeted the crinivirus RdRp gene, and amplify a wide range of crinivirus sequences. Both detection systems can be used with most common RNA extraction methods, and with RT-PCR reagents common in most laboratories.

Technical Abstract: A method was developed for rapid identification and differentiation of both known and novel crinivirus species involving both multiplex and degenerate reverse transcription-polymerase chain reaction (RT-PCR). The multiplex method can discriminate among known criniviruses infecting vegetable and small fruit crops, and rapidly identify viruses associated with disease symptoms, as well as identification of mixed crinivirus infections. For multiplex detection host detection groups were selected based on the types of crops where specific criniviruses would be expected to occur. Each detection group contained three to four crop-specific primer sets designed to the same region of the gene encoding the highly conserved RNA-dependent RNA polymerase gene (RdRp) of criniviruses for rapid, single-reaction determination of which crinivirus(es) may be infecting a plant. Degenerate reverse primers used for RT and in PCR were designed to amplify all members of each host group, and were coupled with species-specific forward primers resulting in four separate single-reaction cocktails for detection of most criniviruses sequenced to date, whether present in single or mixed virus infections. Additional viruses can be added to multiplex detection by adjustment of primer concentration for balanced detection of target viruses. In order to identify unknown putative criniviruses or those for which sequence information is not yet available, a genus-wide, universal degenerate primer set was developed. These primers also targeted the crinivirus RdRp gene, and amplify a wide range of crinivirus sequences. Both detection systems can be used with most common RNA extraction methods, and with RT-PCR reagents common in most laboratories.