Skip to main content
ARS Home » Northeast Area » Ithaca, New York » Robert W. Holley Center for Agriculture & Health » Plant, Soil and Nutrition Research » Research » Publications at this Location » Publication #269275

Title: Evidence for network evolution in an arabidopsis interactome map

Author
item MATIJA, DREZE - Dana-Farber Cancer Institute
item RUXANDRA CARVUNIS, ANNE - Dana-Farber Cancer Institute
item CHARLOTEAUX, BENOIT - Dana-Farber Cancer Institute
item GALLI, MARY - Salk Institute
item PEVZNER, SAMUEL - Dana-Farber Cancer Institute
item TASAN, MURAT - Harvard Medical School
item STEIN, JOSHUA - Cold Spring Harbor Laboratory
item SPOONER, WILLIAM - Cold Spring Harbor Laboratory
item Ware, Doreen
item BRAUN, PASCAL - Dana-Farber Cancer Institute
item ECKER, JOSEPH - Salk Institute
item HILL, DAVID - Dana-Farber Cancer Institute
item ROTH, FREDERICK - Dana-Farber Cancer Institute
item VIDAL, MARC - Dana-Farber Cancer Institute

Submitted to: Science
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 7/15/2011
Publication Date: 7/29/2011
Citation: Matija, D., Ruxandra Carvunis, A., Charloteaux, B., Galli, M., Pevzner, S.J., Tasan, M., Stein, J., Spooner, W., Ware, D., Braun, P., Ecker, J.R., Hill, D.E., Roth, F.P., Vidal, M. 2011. Evidence for network evolution in an arabidopsis interactome map. Science. 333(6042):601-607.

Interpretive Summary: In order to understand how proteins work together to bring about cellular functions, ~2,700 proteins of Arabidopsis thaliana were tested for the ability to interact with one-another using a yeast two-hybrid assay. From thousands of observed interactions many signaling networks were deduced. The evolution of protein-protein interaction networks was examined by comparing how many interactions are shared between proteins derived from duplicated genes (paralogs). The paralogs were dated using a phylogenetic approach. It was observed that gene duplication results in rapid divergence in function and rewiring of protein-protein interaction networks. Over time this process stabilizes as the rate of functional divergences slows down. This study dramatically increases the number of proteins for which interactions are known and provides a valuable resource for understanding gene function.

Technical Abstract: Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the plant Arabidopsis thaliana containing ~6,200 highly reliable interactions between ~2,700 proteins. A global organization of plant biological processes emerges from community analyses of the resulting network, together with large numbers of novel hypothetical functional links between proteins and pathways. We observe a dynamic rewiring of interactions following gene duplication events, providing evidence for a model of evolution acting upon interactome networks. This and future plant interactome maps should facilitate systems approaches to better understand plant biology and improve crops.