Skip to main content
ARS Home » Northeast Area » Ithaca, New York » Robert W. Holley Center for Agriculture & Health » Plant, Soil and Nutrition Research » Research » Publications at this Location » Publication #272397

Title: A promoter swap strategy between the AtALMT and AtMATE genes increased arabidopsis aluminum resistance and improved carbon use efficiency for aluminum resistance

Author
item Liu, Jiping
item LUO, XIAOYING - Southwest University
item SHAFF, JON - Cornell University
item LIANG, CUIYUE - South China Agricultural University
item JIA, XIAOMIN - Cornell University
item LI, ZIYAN - Northwest Agricultural University
item MAGALHAES, JURA - Embrapa
item Kochian, Leon

Submitted to: Plant Journal
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 3/9/2012
Publication Date: 7/12/2012
Citation: Liu, J., Luo, X., Shaff, J., Liang, C., Jia, X., Li, Z., Magalhaes, J., Kochian, L.V. 2012. A promoter swap strategy between the AtALMT and AtMATE genes increased arabidopsis aluminum resistance and improved carbon use efficiency for aluminum resistance. Plant Journal. 71(2):327-337.

Interpretive Summary: Over 20 percent of the U.S> land area and approximately 50 percent of the world’s arable lands are acidic (pH

Technical Abstract: In Arabidopsis, aluminum (Al)-activated AtALMT1-mediated root malate exudation plays a major role in Al tolerance, while Al-activated AtMATE-mediated citrate exudation plays a much smaller role. In this study, we demonstrate that the levels of Al-activated root organic acid exudation are closely correlated with the transcriptional levels of the organic acid transporter genes, AtALMT1 and AtMATE. We found here that the AtALMT1 promoter is stronger than the AtMATE promoter. From this result, in conjunction with the fact that citrate is a much more effective Al chelator than malate, we adopted a promoter swap strategy to test if the expression of the AtMATE gene driven by the strong AtALMT1 promoter will result in increased Al tolerance in Arabidopsis. Our results indicated that the AtALMT1:AtMATE promoter swap not only increased Al tolerance of the transgenic plants, but also enhanced carbon usage efficiency for Al tolerance.