Skip to main content
ARS Home » Southeast Area » Gainesville, Florida » Center for Medical, Agricultural and Veterinary Entomology » Insect Behavior and Biocontrol Research » Research » Publications at this Location » Publication #279536

Title: The hobo transposable element has transposase-dependent and -independent excision activity in drosophilid species

Author
item Handler, Alfred - Al
item GOMEZ, SHEILACHU - Former ARS Employee

Submitted to: Molecular and General Genetics
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 10/3/1994
Publication Date: N/A
Citation: Handler, A.M., Gomez, S.P. 1995. The hobo transposable element has transposase-dependent and -independent excision activity in drosophilid species. Molecular and General Genetics. 247:399-408.

Interpretive Summary: Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species by scientists at the USDA Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, Gainesville, Florida.. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excision was detected in a D. melanogaster strain (cn; ry 42) devoid of endogenous hobo elements only after co-injection of a helper plasmid containing functional hobo transposase under either heat shock or normal promoter regulation. Excision was also detected in D. melanogaster without helper in strains known to contain genomic copies of hobo. In Drosophila species confirmed not to contain hobo, hobo excision occurred at significant rates both in the presence and absence of co-injected helper plasmid. In four of the seven species tested, excision frequencies were two- to fivefold lower in the presence of plasmid-borne hobo. hobo excision donor sites were sequenced in indicator plasmids extracted from D. melanogaster cn; ry 42 and D. virilis embryos. In the presence of hobo transposase, the predominant excision sites were identical in both species, having breakpoints at the hobo termini with an inverted duplication of proximal insertion site DNA. However, in the absence of hobo transposase in D. virilis, excision break-points were apparently random and occurred distal to the hobo termini. The data indicate that hobo is capable of functioning in the soma during embryogenesis, and that its mobility is un-restricted in drosophilids. Furthermore, drosophilids not con-taining hobo are able to mobilize hobo, presumably by a hobo-related cross-mobilizing system. The cross-mobilizing system in D. virilis is not functionally identical to hobo with respect to excision sequence specificity.

Technical Abstract: Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excision was detected in a D. melanogaster strain (cn; ry 42) devoid of endogenous hobo elements only after co-injection of a helper plasmid containing functional hobo transposase under either heat shock or normal promoter regulation. Excision was also detected in D. melanogaster without helper in strains known to contain genomic copies of hobo. In Drosophila species confirmed not to contain hobo, hobo excision occurred at significant rates both in the presence and absence of co-injected helper plasmid. In four of the seven species tested, excision frequencies were two- to fivefold lower in the presence of plasmid-borne hobo. hobo excision donor sites were sequenced in indicator plasmids extracted from D. melanogaster cn; ry 42 and D. virilis embryos. In the presence of hobo transposase, the predominant excision sites were identical in both species, having breakpoints at the hobo termini with an inverted duplication of proximal insertion site DNA. However, in the absence of hobo transposase in D. virilis, excision breakpoints were apparently random and occurred distal to the hobo termini. The data indicate that hobo is capable of functioning in the soma during embryogenesis, and that its mobility is unrestricted in drosophilids. Furthermore, drosophilids not containing hobo are able to mobilize hobo, presumably by a hobo-related cross-mobilizing system. The cross-mobilizing system in D. virilis is not functionally identical to hobo with respect to excision sequence specificity.