Author
LIN, ZHONGWEI - Kansas State University | |
LI, XIANRAN - Kansas State University | |
SHANNON, LAURA - University Of Wisconsin | |
YEH, CHEN-TING - Iowa State University | |
Wang, Ming | |
Bai, Guihua | |
PENG, ZHAO - Kansas State University | |
LI, JIARUI - Kansas State University | |
TRICK, HAROLD - Kansas State University | |
CLEMENTE, THOMAS - University Of Nebraska | |
DOEBLEY, JOHN - University Of Wisconsin | |
SCHNABLE, PATRICK - Iowa State University | |
TUINSTRA, MITCHELL - Purdue University | |
TESSO, TESFAYE - Kansas State University | |
WHITE, FRANK - Kansas State University | |
YU, JIANMING - Kansas State University |
Submitted to: Nature Genetics
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 4/19/2012 Publication Date: 5/13/2012 Citation: Lin, Z., Li, X., Shannon, L.M., Yeh, C., Wang, M.L., Bai, G., Peng, Z., Li, J., Trick, H.N., Clemente, T.E., Doebley, J., Schnable, P.S., Tuinstra, M.R., Tesso, T.T., White, F., Yu, J. 2012. Parallel domestication of the Shattering1 genes in cereals. Nature Genetics. 44:720-724. Interpretive Summary: A key step during crop domestication is the loss of seed shattering. Here, we show that seed shattering in sorghum is controlled by a single gene, Shattering1 (Sh1), which encodes a YABBY transcription factor. Domesticated sorghums harbor three different mutations at the Sh1 locus. Variants at regulatory sites in the promoter and intronic regions lead to a low level of expression, a 2.2-kb deletion causes a truncated transcript that lacks exons 2 and 3, and a GT-to-GG splice-site variant in the intron 4 results in removal of the exon 4. The distributions of these non-shattering haplotypes among sorghum landraces suggest three independent origins. The function of the rice ortholog (OsSh1) was subsequently validated with a shattering-resistant mutant, and two maize orthologs (ZmSh1-1 and ZmSh1-5.1+ZmSh1-5.2) were verified with a large mapping population. Our results indicate that Sh1 genes for seed shattering were under parallel selection during sorghum, rice and maize domestication. Technical Abstract: A key step during crop domestication is the loss of seed shattering. Here, we show that seed shattering in sorghum is controlled by a single gene, Shattering1 (Sh1), which encodes a YABBY transcription factor. Domesticated sorghums harbor three different mutations at the Sh1 locus. Variants at regulatory sites in the promoter and intronic regions lead to a low level of expression, a 2.2-kb deletion causes a truncated transcript that lacks exons 2 and 3, and a GT-to-GG splice-site variant in the intron 4 results in removal of the exon 4. The distributions of these non-shattering haplotypes among sorghum landraces suggest three independent origins. The function of the rice ortholog (OsSh1) was subsequently validated with a shattering-resistant mutant, and two maize orthologs (ZmSh1-1 and ZmSh1-5.1+ZmSh1-5.2) were verified with a large mapping population. Our results indicate that Sh1 genes for seed shattering were under parallel selection during sorghum, rice and maize domestication. |