Skip to main content
ARS Home » Pacific West Area » Tucson, Arizona » SWRC » Research » Publications at this Location » Publication #283866

Title: Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

Author
item YAN, H. - World Meteorological Organization
item WANG, S.Q. - Chinese Academy Of Sciences
item BILLESBACH, D. - University Of Nebraska
item OECHEL, W. - San Diego State University
item ZHANG, J. - Chinese Academy Of Agriculture & Mechanical Sciences
item MEYES, T. - National Oceanic & Atmospheric Administration (NOAA)
item MARTIN, T.. - University Of Florida
item MATAMALA, R. - Argonne National Laboratory
item BALDOCCHI, D. - University Of California
item BOHRER, G. - The Ohio State University
item DRAGONI, D. - Indiana University
item Scott, Russell - Russ

Submitted to: Remote Sensing of Environment
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 6/2/2012
Publication Date: 9/1/2012
Citation: Yan, H., Wang, S., Billesbach, D., Oechel, W., Zhang, J., Meyes, T., Martin, T., Matamala, R., Baldocchi, D., Bohrer, G., Dragoni, D., Scott, R.L. 2012. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sensing of Environment. 124:581-595. doi:10.1016/j.rse.2012.06.004.

Interpretive Summary: Terrestrial evaporation, representing the movement of water from the land surface to the atmosphere, is a major component of the global hydrological cycle. With the advent of satellite monitoring and networks to measure evaporation, there is a need to development computer models that can be used in conjunction with these data to produce regional to global estimates of terrestrial evaporation. Accordingly, this work describes a promising new methodology to model evaporation. Comparison with site measurements confirms that the model can accurately model evaporation with small error. The model is then used to produce a new estimate of total global evaporation and yearly trends from 1984 to 1998, which compare favorably with previous estimates using differing methodologies. This model is the first of its kind to provide global land evaporation estimates that explicitly accounts for the water balance at a site.

Technical Abstract: Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and environmental constraints on E. It uses remotely sensed leaf area index (LAI) and surface meteorological data to estimate E by: 1) introducing a simple biophysical model for canopy conductance (Gc), defined as a constant maximum stomatal conductance gsmax of 12.2mm s-1 multiplied by air relative humidity (Rh) and LAI (Gc=gs max×Rh×LAI); 2) calculating canopy transpiration with the Gc-based Penman–Monteith (PM) E model; 3) calculating soil evaporation from an air relative-humidity-based model of evapotranspiration (Yan & Shugart, 2010); 4) calculating total E (E0) as the sum of the canopy transpiration and soil evaporation, assuming the absence of soil water stress; and 5) correcting E0 for soil water stress using a soil water balance model. This physiological ARTS E model requires no calibration. Evaluation against eddy covariance measurements at 19 flux sites, representing a wide variety of climate and vegetation types, indicates that daily estimated E had a root mean square error=0.77 mmd-1, bias=-0.14mm d-1, and coefficient of determination, R2=0.69. Global, monthly, 0.5°-gridded ARTS E simulations from 1984 to 1998,which were forced using Advanced Very High Resolution Radiometer LAI data, Climate Research Unit climate data, and surface radiation budget data, predicted a mean annual land E of 58.4×103 km3. This falls within the range (58×103–85×103 km3) estimated by the Second Global Soil Wetness Project (GSWP-2; Dirmeyer et al., 2006). The ARTS E spatial pattern agrees well with that of the global E estimated by GSWP-2. The global annual ARTS E increased by 15.5mm per decade from 1984 to 1998, comparable to an increase of 9.9 mm per decade from the model tree ensemble approach (Jung et al., 2010). These comparisons confirm the effectivity of the ARTS E model to simulate the spatial pattern and climate response of global E. This model is the first of its kind among remote-sensing-based PM E models to provide global land E estimation with consideration of the soil water balance.