Author
TRAVADON, RENAUD - University Of California | |
Baumgartner, Kendra | |
ROLSHAUSEN, P.E. - University Of California | |
GUBLER, W.D. - University Of California | |
SOSNOWSKI, M.R. - South Australian Research And Development Institute | |
LECOMTE, P. - Institut National De La Recherche Agronomique (INRA) | |
HALLEEN, F. - Agricultural Research Council Of South Africa | |
PEROS, J.-P, - Institut National De La Recherche Agronomique (INRA) |
Submitted to: Plant Pathology
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 6/1/2011 Publication Date: 2/1/2012 Citation: Travadon, R., Baumgartner, K., Rolshausen, P., Gubler, W., Sosnowski, M., Lecomte, P., Halleen, F., Peros, J. 2012. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents. Plant Pathology. 61:85-95. Interpretive Summary: Technical Abstract: The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europe and South Africa), based on analysis of 293 isolates genotyped with nine microsatellite markers. High levels of haplotypic richness (R = 0·91–1) and absence of multilocus linkage disequilibrium among loci supported the preponderance of sexual reproduction in all regions examined. Nonetheless, the identification of identical multilocus haplotypes with identical vegetative compatibility groups, in some vineyards in California and South Africa, suggests that asexual dispersal of the fungus among neighbouring plants could be a rare means of disease spread. The greatest levels of allelic richness (A = 4·89–4·97) and gene diversity (H = 0·66–0·69) were found in Europe among geographic samples from coastal areas surrounding the Mediterranean Sea, whereas the lowest genetic diversity was found in South Africa and Australia (A = 2·78–3·74; H = 0·49–0·57). Samples from California, Australia and South Africa, which had lower genetic diversity than those of Europe, were also characterized by demographic disequilibrium and, thus, may represent founding populations of the pathogen. Low but significant levels of genetic differentiation among all samples (DEST = 0·12, P = 0·001; FST = 0·03, P = 0·001) are consistent with historical gene flow preventing differentiation at continental scales. These findings suggest that global, human-mediated spread of the fungus may have resulted in its current global distribution. |