Skip to main content
ARS Home » Research » Publications at this Location » Publication #289979

Title: Isolation and characterization of lignin-degrading bacteria from rainforest soils

Author
item HUANG, XING-FENG - Colorado State University
item SANTHANAM, NAVANEETHA - Colorado State University
item BADRI, DAYAKAR - Colorado State University
item Hunter, William
item Manter, Daniel
item DECKER, STEPHEN - National Renewable Energy Laboatory
item VIVANCO, JORGE - Colorado State University
item REARDON, KENNETH - Colorado State University

Submitted to: Biotechnology and Bioengineering
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 7/12/2012
Publication Date: 6/1/2013
Citation: Huang, X., Santhanam, N., Badri, D., Hunter, W.J., Manter, D.K., Decker, S., Vivanco, J., Reardon, K. 2013. Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnology and Bioengineering. 110:1616-1626.

Interpretive Summary: The deconstruction of lignin to enhance the release of fermentable sugars from plant cell walls presents a challenge for biofuels production from lignocellulosic biomass. The discovery of novel lignin-degrading enzymes from bacteria could provide advantages over fungal enzymes in terms of their production and relative ease of protein engineering. In this study, 140 bacterial strains isolated from soils of a biodiversity-rich rainforest in Peru were screened based on their oxidative activity on ABTS, a laccase substrate. Strain C6 (Bacillus pumilus) and strain B7 (Bacillus atrophaeus) were selected for their high laccase activity and identified by 16S rDNA analysis. Strains B7 and C6 degraded fragments of Kraft lignin and the lignin model dimer guaiacylglycerol-ß-guaiacyl ether, the most abundant linkage in lignin. Finally, LC-MS analysis of incubations of strains B7 and C6 with poplar biomass in rich and minimal media revealed that a higher number of compounds were released in the minimal medium than in the rich one. These findings provide important evidence that bacterial enzymes can degrade and/or modify lignin and contribute to the release of fermentable sugars from lignocellulose.

Technical Abstract: The deconstruction of lignin to enhance the release of fermentable sugars from plant cell walls presents a challenge for biofuels production from lignocellulosic biomass. The discovery of novel lignin-degrading enzymes from bacteria could provide advantages over fungal enzymes in terms of their production and relative ease of protein engineering. In this study, 140 bacterial strains isolated from soils of a biodiversity-rich rainforest in Peru were screened based on their oxidative activity on ABTS, a laccase substrate. Strain C6 (Bacillus pumilus) and strain B7 (Bacillus atrophaeus) were selected for their high laccase activity and identified by 16S rDNA analysis. Strains B7 and C6 degraded fragments of Kraft lignin and the lignin model dimer guaiacylglycerol-ß-guaiacyl ether, the most abundant linkage in lignin. Finally, LC-MS analysis of incubations of strains B7 and C6 with poplar biomass in rich and minimal media revealed that a higher number of compounds were released in the minimal medium than in the rich one. These findings provide important evidence that bacterial enzymes can degrade and/or modify lignin and contribute to the release of fermentable sugars from lignocellulose.