Location: Emerging Pests and Pathogens Research
Title: Protein interaction networks at the host-microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogenAuthor
Ramsey, John - John | |
CHAVEZ, JUAN - University Of Washington | |
JOHNSON, RICHARD - University Of Washington | |
MAHONEY, JACLYN - Boyce Thompson Institute | |
MOHR, JARED - Cornell University | |
ROBISON, FAITH - Boyce Thompson Institute | |
ZHONG, XUEFEI - University Of Washington | |
Hall, David | |
MACCOSS, MICHAEL - University Of Washington | |
BRUCE, JAMES - University Of Washington | |
Heck, Michelle |
Submitted to: International Research Conference on Huanglongbing
Publication Type: Proceedings Publication Acceptance Date: 9/1/2017 Publication Date: 2/1/2017 Citation: Ramsey, J.S., Chavez, J., Johnson, R., Mahoney, J., Mohr, J., Robison, F., Zhong, X., Hall, D.G., Maccoss, M., Bruce, J., Heck, M.L. 2017. Protein interaction networks at the host-microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen. International Research Conference on Huanglongbing. 4(2):160545. https://doi.org/10.1098/rsos.160545. DOI: https://doi.org/10.1098/rsos.160545 Interpretive Summary: Technical Abstract: The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs as compared to adults. We hypothesize that expression changes in the D. citri immune system, including the insect's commensal microbiota, occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults as compared to nymphs, including insect proteins involved in bacterial adhesion and immunity. Discovery of protein interaction networks has broad applicability in the study of host-microbe relationships. Using Protein Interaction Reporter (PIR) technology, we show how protein interaction networks in a D. citri are regulated during development and in response to CLas-infected citrus trees. Notably, a hemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. In addition, hemocyanin was found to physically interact with several other D. citri signaling and stress response proteins. Co-evolved protein interaction networks at the host-microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening. |