Location: Soybean Genomics & Improvement Laboratory
Title: Quantitative proteomic analysis of low linolenic acid transgenic soybean reveals perturbations of fatty acid metabolic pathwaysAuthor
ISLAM, NAZRUL - Oak Ridge Institute For Science And Education (ORISE) | |
BATES, PHILIP - Washington State University | |
JOHN, MARIA - Us Forest Service (FS) | |
Krishnan, Hari | |
ZHANG, ZHANYUAN - University Of Missouri | |
Luthria, Devanand - Dave | |
Natarajan, Savithiry - Savi |
Submitted to: Proteomics
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 3/6/2019 Publication Date: 4/7/2019 Citation: Islam, N., Bates, P.D., John, M.K., Krishnan, H.B., Zhang, Z., Luthria, D.L., Natarajan, S.S. 2019. Quantitative proteomic analysis of low linolenic acid transgenic soybean reveals perturbations of fatty acid metabolic pathways. Proteomics. 19:1-11. https://doi.org/10.1002/pmic.201800379. DOI: https://doi.org/10.1002/pmic.201800379 Interpretive Summary: Soybean seeds are an important source of cooking oil. Commercial soybean oil is composed of 7-10% linolenic acid. This percentage is undesirable because linolenic acid lowers shelf life and lowers the stability of the oil at higher temperatures. To overcome this problem, researchers have improved soybeans using a biochemical technique called gene silencing to reduce the expression of soybean genes needed to produce linolenic acid. To extend our knowledge about these seeds and to explore their biochemical pathways for oil and protein production, we used mass spectrometry, an analytical technique for the study of molecules, to observe changes in the amounts of enzymes in low linolenic acid soybean seeds. We resolved the enzymatic pathways that produce oils in seeds and found the enzymes altered by gene silencing to explain decreases in linolenic acid production. These results will be useful to scientists at univeristies, companies, and public institutions who research and study the oil composition of soybean seeds and who work to develop new and improved soybean products of higher quality. Technical Abstract: To understand the effect of fatty acid desaturase gene (GmFAD3) silencing on perturbation of fatty acid (FA) metabolic pathways, we compared the changes in protein profiling in control and low linolenic acid transgenic soybeans using tandem mass tag (TMT) based mass spectrometry. Protein profiling of the transgenic line unveiled changes in several key enzymes of FA metabolism. This includes enzymes of lower abundance; fabH, fabF and thioestrase associated with FA initiation, elongation and desaturation processes and LOX1_5, ACOX, ACAA1, MFP2 associated with ß-oxidation of a-linolenic acids pathways. These results are important for exploring how plants adjust in their biological processes when certain changes are induced in the genetic makeup. A complete understanding of these processes will aid researchers to alter genes to develop value-added soybean seeds. |