Location: Plant Gene Expression Center
Title: Strong succession in arbuscular mycorrhizal fungal communitiesAuthor
GAO, CHENG - University Of California | |
MONTOYA, LILLIAM - University Of California | |
XU, LING - University Of California | |
MADERA, MARY - University Of California | |
HOLLINGSWORTH, JOY - Kearney Agricultural Center | |
SIEVERT, JULIE - Kearney Agricultural Center | |
PURDOM, ELIZABETH - University Of California | |
DAHLBERG, JEFFREY - Kearney Agricultural Center | |
Coleman-Derr, Devin | |
LEMAUX, PEGGY - University Of California | |
TAYLOR, JOHN - University Of California |
Submitted to: The ISME Journal: Multidisciplinary Journal of Microbial Ecology
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 7/24/2018 Publication Date: 8/31/2018 Citation: Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Sievert, J.A., Purdom, E., Dahlberg, J., Coleman-Derr, D.A., Lemaux, P.G., Taylor, J.W. 2018. Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal: Multidisciplinary Journal of Microbial Ecology. 13:214-226. https://doi.org/10.1038/s41396-018-0264-0. DOI: https://doi.org/10.1038/s41396-018-0264-0 Interpretive Summary: The biology and ecology of arbuscular mycorrhizal fungi (AMF), the uncultivatable, symbionts of 70-90% of plants, are understudied and controversial due to overly-broad methods of species recognition. Here, we address the basic ecological process of succession, or seasonal, temporal change in community composition, using the fungal barcode to more narrowly recognize species found with intensive sampling of a simple, agricultural environment. Our data uncover far stronger signals than previously seen of seasonal temporal change in AMF communities in root, rhizosphere and soil that show the patterns of nestedness and turnover, and the processes of immigration and extinction. Our demonstration of succession suggest that AMF are typical of other eukaryotes in terms of ecology, a theme that is also emerging for their reproductive and cell biology. Technical Abstract: Here we revisit the basic ecological process of succession using (i) a system with low environmental heterogeneity comprising one soil, one irrigation scheme, two cultivars of the agricultural host plant, Sorghum bicolor, and frequent sampling (17 weekly samples replicated in triplicate) of soil, rhizosphere and roots that cover the time from seedling emergence through fruit maturation, and using (ii) OTUs characterized using ITS2 by a recently published approach. Our data show a signal of succession in AMF communities that is more than an order of magnitude larger than previously reported. To understand the basis for this signal, we explore patterns of the nestedness and turnover, the processes of immigration and extinction, and ask if the processes are deterministic or stochastic, and positively or negatively dependent on initial population size. |