Location: Insect Genetics and Biochemistry Research
Title: A sweet and fat review of insulin signaling and lipid metabolism in diapausing insectsAuthor
Yocum, George | |
CAMBRON, LIZZETTE - North Dakota State University | |
GREENLEE, KENDRA - North Dakota State University |
Submitted to: Meeting Abstract
Publication Type: Abstract Only Publication Acceptance Date: 5/10/2019 Publication Date: 11/17/2019 Citation: Yocum, G.D., Cambron, L.D., Greenlee, K.J. 2019. A sweet and fat review of insulin signaling and lipid metabolism in diapausing insects [abstract]. Entomological Society of America Annual Meeting. Nov. 17-20, 2019. St. Louis, MO. Talk No. 2141. Interpretive Summary: Technical Abstract: Many insects go through diapause at some point in their development. During this time overall metabolism is maintained low to preserve energy and arrest development. The mechanisms behind diapause initiation, maintenance, and termination have been extensively studied in a limiting number of insect species. Much more remains to be elucidated in other insects, especially those of agricultural importance like pollinators. Of these mechanisms, both the insulin signaling pathway and lipid metabolism play a large role. Insulin-like peptides (ILP) have been shown to vary in gene copy number, function, and regulation across different insect species. Of these functions, studies have shown that ILP can regulate carbohydrate and lipid metabolism, but it unclear if this is true throughout all of diapause or conserved across species. When insulin signaling is disrupted, diapause incidence and lipid stores are greatly impacted, suggesting a cross-communication between insulin signaling and lipid metabolism pathways. The alfalfa leafcutting bee, Megachile rotundata, is the most intensely commercially managed solitary pollinator. Current management practices are to store these bees under diapause conditions for up to nine months. In order to improve pollinator health and availability, storage protocols need to be optimized. Understanding how the physiology of these bees changes over the course of diapause is essential to improving storage protocols. Due to its central role in diapause, elucidating how the insulin signaling pathway changes over the course of diapause will provide key insights for improving pollinator health and our understanding of diapause. |