Location: Soybean and Nitrogen Fixation Research
Title: The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesisAuthor
VU, LAM DAI - Ghent University | |
ZHU, TINGTING - Ghent University | |
XU, XIANGYU - Ghent University | |
DE JONG, DORRIT - Ghent University | |
VAN ZANTEN, MARTIJN - Utrecht University | |
VANREMOORTELE, TIM - Ghent University | |
Locke, Anna | |
VAN DE COTTE, BRIGITTE - Ghent University | |
DE WINNE, NANCY - Ghent University | |
STES, ELIZABETH - Ghent University | |
DE JAEGER, GEERT - Ghent University | |
VAN DAMME, DANIEL - Ghent University | |
UAUY, CRISTOBAL - John Innes Center | |
GEVAERT, KRIE - Ghent University | |
SMET, IVE DE - Ghent University |
Submitted to: Nature Communications
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 4/12/2021 Publication Date: 5/14/2021 Citation: Vu, L., Zhu, T., Xu, X., De Jong, D., Van Zanten, M., Vanremoortele, T., Locke, A.M., Van De Cotte, B., De Winne, N., Stes, E., De Jaeger, G., Van Damme, D., Uauy, C., Gevaert, K., Smet, I. 2021. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nature Communications. https://doi.org/10.1038/s41467-021-23112-0. DOI: https://doi.org/10.1038/s41467-021-23112-0 Interpretive Summary: The molecular pathways through which plants signal temperature increases and adjust their growth and physiology are not fully understood. Using protein phosphorylation data, a new molecular signaling complex was identified that plays an important role in how growth responds to temperature in the model plant Arabidopsis thaliana. Additionally, this same temperature-responsive signaling complex was identified in protein phosphorylation data from soybean and wheat. Technical Abstract: Plants respond to warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. Our understanding of the genetic regulation of thermomorphogenesis has increased in recent years. However, cellular signaling pathways have been underexplored and hardly anything is known about molecular mechanisms outside the model plant A. thaliana. Therefore, to identify regulators of thermomorphogenesis that are conserved in flowering plants, we mapped changes in protein phosphorylation in both dicots and monocots exposed to warm temperature. Through this approach, we identified a novel, functionally conserved signaling complex of MITOGENACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4KS) in warm temperature-mediated growth regulation. Genetic and molecular data showed that this pathway acts independent of PIF4 and phyB thermosignaling pathways. Understanding the diverse pathways that regulate warm temperature-mediated growth will guarantee food security under a changing climate. |