Location: Nutrition, Growth and Physiology
Title: Micronutrients, one-carbon metabolism, and epigenetics: Potential developmental and production outcomesAuthor
Crouse, Matthew | |
CATON, JOEL - North Dakota State University | |
WARD, ALISON - North Dakota State University |
Submitted to: Journal of Animal Science Supplement
Publication Type: Abstract Only Publication Acceptance Date: 6/26/2020 Publication Date: 11/30/2020 Citation: Crouse, M.S., Caton, J., Ward, A.K. 2020. Micronutrients, one-carbon metabolism, and epigenetics: Potential developmental and production outcomes [abstract]. Journal of Animal Science. 98(Supplement 4):170. https://doi.org/10.1093/jas/skaa278.312. DOI: https://doi.org/10.1093/jas/skaa278.312 Interpretive Summary: Technical Abstract: One-carbon metabolism is the network of biochemical pathways in which methyl groups are transferred from one compound to another for methylation processes. Expansion of the core pathway connects one-carbon metabolism to polyamine synthesis, nucleotide synthesis, redox metabolism, and the citric acid cycle. One-carbon metabolites (OCM) are methyl donors and cofactors which play key roles in the one-carbon metabolism pathway and include B-vitamins (choline, vitamin B12, vitamin B6, riboflavin, and folate), minerals (cobalt and sulfur) and amino acids (methionine, serine, and glycine). One-carbon metabolites are fundamental methyl donors for epigenetic modifications. Immediately post-fertilization, the embryonic genome undergoes epigenetic remodeling, and is the time when cell division is greatest (cell divisions/total cell number). At this time OCM supplementation may have its greatest impact on programming of offspring development, growth and postnatal performance, due to established metabolic roles in epigenetics (methyl transfer), growth (polyamine and nucleotide synthesis), and energetics. Limited data are available, however, which directly investigates the developmental effects of OCM supplementation in ruminants. In dairy cows, OCM supplementation in late gestation increased calf birth weight, nutrient sensing pathway activation, and offspring performance through the pre-weaning period. Methyl deficient diets during the pre-conception period in ewes altered the offspring hepatic methylome at 90 days of gestation, as well as the body composition and insulin tolerance of ram lambs at 22-mo of age. Bovine embryonic fibroblasts cultured in vitro with increasing OCM had greater growth rates and mitochondrial respiration parameters. Additional research into the area of one-carbon metabolism and the roles that OCM supplementation may play on postnatal function will provide new knowledge that could lead to altered management practices and increased efficiency of beef cattle. |