Skip to main content
ARS Home » Pacific West Area » Albany, California » Plant Gene Expression Center » Research » Publications at this Location » Publication #376181

Research Project: Discovery of Plant Genetic Mechanisms Controlling Microbial Recruitment to the Root Microbiome

Location: Plant Gene Expression Center

Title: Drought drives spatial variation in the millet root microbiome

Author
item SIMMONS, TUESDAY - University Of California
item STYER, ALEXANDER - University Of California
item PIERROZ, GRADY - University Of California
item GONCALVES, ANTONIO - University Of California
item PASICHA, RAMJI - University Of California
item HAZRA, AMRITA - University Of California
item BUBNER, PATRICIA - University Of California
item Coleman-Derr, Devin

Submitted to: Frontiers in Plant Science
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 4/20/2020
Publication Date: 5/28/2020
Citation: Simmons, T., Styer, A., Pierroz, G., Goncalves, A., Pasicha, R., Hazra, A., Bubner, P., Coleman-Derr, D.A. 2020. Drought drives spatial variation in the millet root microbiome. Frontiers in Plant Science. 11. https://doi.org/10.3389/fpls.2020.00599.
DOI: https://doi.org/10.3389/fpls.2020.00599

Interpretive Summary: Efforts to boost crop yield and meet global food demands while striving to reach sustainability goals are hindered by the increasingly severe impacts of abiotic stress, such as drought. One strategy for alleviating drought stress in crops is to utilize root-associated bacteria, yet knowledge concerning the relationship between plant hosts and their microbiomes during drought remain under-studied. One broad pattern that has recently been reported in a variety of monocot and dicot species from both native and agricultural environments, is the enrichment of Actinobacteria within the drought-stressed root microbiome. Collectively, these data help narrow the list of potential causes of drought-induced Actinobacterial enrichment in plant roots by showing that enrichment is dependent upon localized drought responses but not root developmental stage or root death.

Technical Abstract: Here we provide an amplicon based analysis temporal and spatial dynamics in the millet root microbiome. we performed a series of experiments in millet plants to explore the roles of drought severity, drought localization, and root development in provoking Actinobacteria enrichment within the root endosphere. Through 16S rRNA amplicon-based sequencing, we demonstrate that the degree of drought is correlated with levels of Actinobacterial enrichment in four species of millet. Additionally, we demonstrate that the observed drought-induced enrichment of Actinobacteria occurs along the length of the root, but the response is localized to portions of the root experiencing drought. Finally, we demonstrate that Actinobacteria are depleted in the dead root tissue of Japanese millet, suggesting saprophytic activity is not the main cause of observed shifts in drought-treated root microbiome structure. Collectively, these results help narrow the list of potential causes of drought-induced Actinobacterial enrichment in plant roots by showing that enrichment is dependent upon localized drought responses but not root developmental stage or root death.