Location: Commodity Utilization Research
Title: Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuceAuthor
WANG, YI-MIN - Hohai University | |
LIU, QING - Hohai University | |
LI, MING - Nanjing Institute Of Environmental Sciences | |
YUAN, XU-YIN - Hohai University | |
Uchimiya, Sophie | |
WANG, SHAO-WEI - Hohai University | |
ZHANG, ZHI-YUAN - Hohai University | |
JI, TAO - Hohai University | |
WANG, YING - Hohai University | |
ZHAO, YU-YAN - Hohai University |
Submitted to: Ecotoxicology and Environmental Safety
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 11/15/2020 Publication Date: 12/7/2020 Citation: Wang, Y.-M., Liu, Q., Li, M., Yuan, X.-Y., Uchimiya, M., Wang, S.-W., Zhang, Z.-Y., Ji, T., Wang, Y., Zhao, Y.-Y. 2020. Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuce. Ecotoxicology and Environmental Safety. 208. Article 111675. https://doi.org/10.1016/j.ecoenv.2020.111675. DOI: https://doi.org/10.1016/j.ecoenv.2020.111675 Interpretive Summary: Cadmium is highly mobile and easily accumulates in edible parts of food crops such as lettuce. Traditional chemical methods are too simplified to measure how much cadmium is actually taken up by the plant root, at which level cadmium becomes toxic, or how much cadmium is transported to the edible part, i.e., leaf. This study employed a dedicated method to measure available cadmium to the root. Augmentation of soil organic carbon could help mitigate adverse effects of cadmium. Technical Abstract: Sequential extraction is traditionally used to estimate the bioavailable fraction of Cd and other heavy metal contaminants to food crops. More recently, rhizospheric porewater sampling techniques became available to account for the spatiotemporal variations of metal fractions available for the root uptake. This study compared a simplified rhizospheric Cd monitoring against a sequential extraction technique to understand how biochar influences Cd mobility in sandy/acidic and more fertile soil types. Acidic soil with low organic carbon content and low cation exchange capacity was compared with another soil of contrasting properties with and without amended organic carbon, 3% corn-straw derived biochar. After 60 days of lettuce growth at five levels of Cd (CdCl2), soil bioavailable Cd was analyzed by BCR sequential extraction and soil pore-water extraction methods. Various regression analyses were used to establish correlations between soil bioavailable Cd and its phytotoxicity in lettuce tissues. Biochar increased pH, CEC and SOM, and decreased the contents of Cd in soil pore-water (Cdpore-water) and BCR extracted bioavailable Cd (CdFi+Fii). Linear regression and pearson correlation analyses showed that soil bioavailable Cd is negatively correlated with soil properties (p < 0.05). Soil Cdpore-water was the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and better correlated with soil Cdpore-water (r = -0.672, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Pearson and aggregated boosted tree (ABT) analyses indicated that soil properties together with bioavailable Cd (Cdpore-water) contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and phytotoxicity in soil-plant system with or without biochar. |