Location: Crops Pathology and Genetics Research
Title: Ecologically driven selection of nonstructural carbohydrate storage in oak treesAuthor
FURZE, MORGAN - Yale University | |
WAINWRIGHT, DYLAN - Yale University | |
HUGGETT, BRETT - Bates College | |
KNIPFER, THORSTEN - University Of California, Davis | |
McElrone, Andrew | |
BRODERSEN, CRAIG - Yale University |
Submitted to: New Phytologist
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 6/26/2021 Publication Date: 7/8/2021 Citation: Furze, M.E., Wainwright, D.K., Huggett, B.A., Knipfer, T., McElrone, A.J., Brodersen, C.R. 2021. Ecologically driven selection of nonstructural carbohydrate storage in oak trees. New Phytologist. 232:567-578. https://doi.org/10.1111/nph.17605. DOI: https://doi.org/10.1111/nph.17605 Interpretive Summary: Technical Abstract: The large diversity of plant communities illustrates the alternative strategies that plants have evolved to live under the same environmental conditions. Leaf habit is a key qualitative character that varies between plant species and has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage, in an evolutionary context, has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 Quercus (oak) species, representing three different leaf habits (deciduous, brevideciduous, and evergreen) and growing at the same site in northern California (USA). By accounting for phylogenetic relationships, the best fitting models indicated that deciduous oak species are evolving towards higher NSC concentrations than their relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ), which suggests that a deciduous strategy may confer an advantage against stress-associated with a changing world. Overall, our work provides insight in the evolutionary drivers of NSC storage and informs predictions of forest ecosystem C dynamics and resiliency under global change. |