Skip to main content
ARS Home » Northeast Area » University Park, Pennsylvania » Pasture Systems & Watershed Management Research » Research » Publications at this Location » Publication #387087

Research Project: Sustainable Intensification of Integrated Crop-Pasture-Livestock Systems in Northeastern Landscapes

Location: Pasture Systems & Watershed Management Research

Title: Using seaweed in cattle diets to reduce methane production

Author
item Andreen, Danielle (elle)
item Soder, Kathy

Submitted to: Journal of Dairy Science
Publication Type: Other
Publication Acceptance Date: 8/11/2022
Publication Date: 8/22/2022
Citation: Andreen, D.M., Soder, K.J. 2022. Using seaweed in cattle diets to reduce methane production. Journal of Dairy Science. Pg 1.

Interpretive Summary: No Interpretive Summary is required for this Other 115. JLB.

Technical Abstract: Enteric methane (CH4) emission from ruminants is a significant contributor to total greenhouse gas emissions from the livestock sector. Previous research has demonstrated that the red seaweed Asparagopsis taxiformis (AT) strongly inhibits ruminal methanogenesis in batch culture and in vivo experiments, but its effects on CH4 production have not been assessed in continuous culture or with pasture-based diets. A 4-unit continuous culture fermentor system fed orchardgrass (Dactylis glomerata L.) and incremental amounts of AT (0, 0.5, 1, or 1.5%; diet dry matter (DM) basis) was used to assess nutrient digestibility, volatile fatty acid (VFA) concentration, CH4 output, and N metabolism. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with 7 d of treatment adaptation and 3 d of sample collection. Fermentors were fed a total of 76 g of DM per day, split equally into 4 feedings (730, 1030, 1400, and 1900 h). In each of the final 3 d of each experimental period, samples of total effluent were taken for analysis of ammonia N and VFA, and 1 L of effluent was collected for a composite. At the end of the period, composited effluent was blended and then lyophilized for analysis of DM, ash, neutral and acid detergent fiber, crude protein, and total purines. Headspace CH4 concentration in each fermentor was measured every 15 min (192 readings/d) using an FTIR gas analyzer, and pH was recorded every 2 min. Data were analyzed using the MIXED procedure of SAS with orthogonal polynomial contrasts. Methane production in fermentors was reduced by 99.9% within the first 24 h of each experimental period and remained predominantly below the limits of detection for the remaining 9 d. Apparent digestibility of neutral and acid detergent fiber, as well as apparent and true DM digestibilities, were linearly decreased by AT inclusion. Total VFA concentration and molar proportion of acetate decreased in a cubic pattern, and molar proportions of propionate and valerate increased cubically. Ammonia N concentration decreased cubically, while bacterial efficiency increased linearly in response to incremental doses of AT. A. taxiformis acutely and rapidly inhibited CH4 production from of orchardgrass in continuous culture, but also negatively affected nutrient digestibility and VFA production. Further research is required to determine optimal dietary level of AT to mitigate CH4 production while avoiding negative impacts on ruminal fermentation.