Skip to main content
ARS Home » Southeast Area » Raleigh, North Carolina » Plant Science Research » Research » Publications at this Location » Publication #387231

Research Project: Genetic Improvement of Small Grains and Characterization of Pathogen Populations

Location: Plant Science Research

Title: Genome-wide association studies for Fusarium head blight resistance and its trade-off with grain yield in soft red winter wheat

Author
item GAIRE, RUPESH - University Of Illinois
item Brown-Guedira, Gina
item DONG, YANHONG - University Of Minnesota
item OHM, HERBERT - Purdue University
item MOHAMMADI, MOHSEN - Purdue University

Submitted to: Plant Disease
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 9/15/2021
Publication Date: 10/21/2021
Citation: Gaire, R., Brown Guedira, G.L., Dong, Y., Ohm, H., Mohammadi, M. 2021. Genome-wide association studies for Fusarium head blight resistance and its trade-off with grain yield in soft red winter wheat. Plant Disease. 105:2435-2444. https://doi.org/10.1094/PDIS-06-20-1361-RE.
DOI: https://doi.org/10.1094/PDIS-06-20-1361-RE

Interpretive Summary: Identification of quantitative trait loci for Fusarium head blight (FHB) resistance from different sources and pyramiding them into cultivars could provide effective protection against FHB. The objective of this study was to characterize a soft red winter wheat (SRWW) breeding population that has been subjected to intense germplasm introduction and alien introgression for FHB resistance in the past. The population was evaluated under misted FHB nurseries inoculated with Fusarium graminearum-infested corn spawn for two years. Phenotypic data included disease incidence (INC), disease severity (SEV), Fusarium damaged kernels (FDK), FHB index (FHBdx), and deoxynivalenol concentration (DON). Genome-wide association studies using 13,784 SNP markers identified 25 genomic regions at -logP = 4.0 that were associated with five FHB-related traits. Of these 25, the marker trait associations that explained more than 5% phenotypic variation were localized on chromosomes 1A, 2B, 3B, 5A, 7A, 7B, and 7D, and from diverse sources including adapted SRWW lines such as Truman and Bess, and unadapted common wheat lines such as Ning7840 and Fundulea 201R. Furthermore, individuals with favorable alleles at the four loci Fhb1, Qfhb.nc-2B.1 (Q2B.1), Q7D.1, and Q7D.2 showed better FDK and DON scores (but not INC, SEV, and FHBdx) compared with other allelic combinations. Our data also showed while pyramiding multiple loci provides protection against FHB disease, it has a significant trade-off with grain yield.

Technical Abstract: Identification of quantitative trait loci for Fusarium head blight (FHB) resistance from different sources and pyramiding them into cultivars could provide effective protection against FHB. The objective of this study was to characterize a soft red winter wheat (SRWW) breeding population that has been subjected to intense germplasm introduction and alien introgression for FHB resistance in the past. The population was evaluated under misted FHB nurseries inoculated with Fusarium graminearum infested corn spawn for two years. Phenotypic data included disease incidence (INC), disease severity (SEV), Fusarium damaged kernels (FDK), FHB index (FHBdx), and deoxynivalenol concentration (DON). Genome-wide association studies by using 13,784 SNP markers identified twenty-five genomic regions at -logP = 4.0 that were associated with five FHB-related traits. Of these 25, the marker trait associations that explained more than 5% phenotypic variation were localized on chromosomes 1A, 2B, 3B, 5A, 7A, 7B, and 7D, and from diverse sources including adapted SRWW lines such as Truman and Bess, and unadapted common wheat lines such as Ning7840 and Fundulea 201R. Furthermore, individuals with favorable alleles at the four loci Fhb1, Qfhb.nc-2B.1 (Q2B.1), Q7D.1, and Q7D.2 showed better FDK and DON scores (but not INC, SEV, and FHBdx) compared to other allelic combinations. Our data also showed while pyramiding multiple loci provides protection against FHB disease, it has significant trade-off with grain yield.