Skip to main content
ARS Home » Southeast Area » Byron, Georgia » Fruit and Tree Nut Research » Research » Publications at this Location » Publication #414338

Research Project: Healthy, Sustainable Pecan Nut Production

Location: Fruit and Tree Nut Research

Title: Composted Pecan Shells: A Potential Growing Media Amendment for Container Grown Pecan Seedlings in Georgia

Author
item THAPA MAGAR, SRIJANA - Kentucky State University
item Pisani, Cristina
item TERRILL, THOMAS - Fort Valley State University

Submitted to: Symposium Proceedings
Publication Type: Abstract Only
Publication Acceptance Date: 4/18/2024
Publication Date: N/A
Citation: N/A

Interpretive Summary:

Technical Abstract: Pecan (Carya illinoinensis) production in Georgia holds significant economic importance nationally. It is an energy-intensive practice with a very low output-to-input ratio. Pecan byproducts, notably pecan shells and husks, account for up to 49% of the nut but are underutilized. A greenhouse experiment was conducted at the USDA facility in Byron, Georgia in 2023 to study the feasibility of composted pecan shells as a growing media amendment for container-grown pecan seedlings. The composted pecan shell was collected from a local pecan grower’s three-year-old composted pile, while fresh goat manure was sourced from the Fort Valley State University’s farm. Various ratios (0, 25, 50, 75, and 100%) of composted pecan shells, along with biochar, goat manure, and chicken manure, were compared to a commercial soil mix (control). All the growing amendments underwent steam sterilization at 98°F for a couple of hours to eliminate any potential contaminants such as weeds, bacteria, fungi, and parasites. Each treatment combination was placed in individual floats to sow the one-year-old stratified ‘Elliott’ seeds. Once the seedlings developed two juvenile leaves, they were transferred to 3-gallon pots to evaluate further soil and plant physiological parameters. The treatments were arranged in a randomized complete block design with four blocks, each containing one treatment combination. Various soil and plant parameters were evaluated monthly, including soil electrical conductivity and temperature, plant size, photosynthesis, stem water potential, and chlorophyll content, to assess the impact of soil amendments on soil and pecan seedling growth. Results determined that composted pecan shell outperformed others in terms of germination (~80%), while none of the seeds germinated in any chicken manure treatment combination. Remarkably, the growth performance of pecan seedlings under different pecan shell ratios was comparable to those grown in commercial soil mix, biochar, and goat manure, indicating good plant health. The stem water potential values overall ranged above -6 Bar, suggesting no signs of plant water stress throughout the study. However, the 100% goat manure treatment consistently showed seedlings with significantly lower chlorophyll content and photosynthetic activity, leading to the smallest plant size compared to the control and biochar treatments. These findings highlight the potential of composted pecan shells as a sustainable soil amendment for container-grown pecan seedlings, offering a novel approach to repurpose pecan byproducts to enhance soil quality, promote sustainable agriculture practices, and serve as an additional income source to pecan growers, thus contributing to the economic viability of pecan production in Georgia.