Skip to main content
ARS Home » Pacific West Area » Boise, Idaho » Northwest Watershed Research Center » Research » Publications at this Location » Publication #73706

Title: SIMULATING THE RADIATIVE ENERGY BALANCE ASSOCIATED WITH SNOW AND FROZEN SOILS

Author
item Flerchinger, Gerald
item Baker, John
item SPAANS, E. - UNIVERSITY OF MINNESOTA

Submitted to: International Gewex Workshop on Cold Season/Regions Hydrometeorology
Publication Type: Proceedings
Publication Acceptance Date: 1/1/1995
Publication Date: N/A
Citation: N/A

Interpretive Summary: Radiation energy absorbed by a snowpack (including short-wave radiation from the sun and terrestrial long-wave radiation) provides a significant amount of the energy for melting snow, particularly for deep snowpacks which remain late into the spring and summer. These deep snowpacks provide much of the water supply for industry and agriculture in the wester United States. Simulating the radiative balance over snow is particularly challenging because: the reflectivity of the snow changes as the snowpack ages; surface temperature, which affects long-wave radiation exchange, is difficult to simulate; and incoming terrestrial long-wave radiation can be somewhat variable. Few snowmelt models are available that include a comprehensive energy and water balance for cold season conditions, which is required to adequately compute surface temperature and emitted long-wave radiation. The Simultaneous Heat and Water(SHAW)Model is a detailed, physical process model of a vertical, one-dimensional canopy-snow-residue-soil system which integrates the physics of heat and water transfer through plant canopy, snow, residue and soil into one simultaneous solution. The SHAW model was applied to a site near St. Paul, Minnesota U.S.A. where a comprehensive data set for the complete radiative energy balance was collected to test the representation of the radiative balance within the model and to evaluate parameter values used in the model. Application of the model led to changes in the model to yield better agreement with measured radiation balances. This work has led to a better understanding of the radiation balance over a snowpack and improved capability to simulate rate and timing of snowmelt.

Technical Abstract: Snow and ice present interesting challenges to hydrologists. Simulating the radiative balance over snow, which is an important part of surface-atmo e interactions, is particularly challenging because of the decay in albedo over time and the difficulty in estimating surface temperature and incoming long-wave radiation fluxes. Few models are available which include a comprehensive energy and water balance for cold-season conditions. The simultaneous Heat and Water (SHAW) Model is a detailed, physical process model of a vertical, one-dimensional canopy-snow-residue- system which integrates the detailed physics of heat and water transfer through a plant canopy, snow, residue and soil into one simultaneous solution. Detailed provisions for metamorphosis of the snowpack are included. The SHAW model was applied to data for one winter/spring season (November through May) on a ploughed field in Minnesota without prior calibration to test the performance of the radiation components. For the nearly 100 days of snowcover, the model accounted for 69% of the variation in net solar radiation, 66% of the variation in incoming long-wave radiation and 55% of the variation in net radiation balance. Mean absolute error in simulated values ranged from 10 W m-2 for emitted long-wave radiation to -16W m-2 for the entire net radiation balance. Model modifications and parameter adjustments necessary to improve wintertime simulation were investigated. Simulation results suggest that the SHAW model may be a useful tool in simulating the interactive influences of radiative transfer at the surface-atmosphere interface.