Location: Poultry Production and Product Safety Research
Title: Soil quality indices based on long-term conservation cropping systems managementAuthor
AMORIM, HELEN - University Of Arkansas | |
Ashworth, Amanda | |
Wienhold, Brian | |
SAVIN, MARY - University Of Arkansas | |
ALLEN, FRED - University Of Tennessee | |
SAXTON, ARNOLD - University Of Tennessee | |
Owens, Phillip | |
CURI, NILTON - Universidade Federal De Lavras |
Submitted to: Meeting Abstract
Publication Type: Abstract Only Publication Acceptance Date: 7/31/2019 Publication Date: N/A Citation: N/A Interpretive Summary: Technical Abstract: The Soil Management Assessment Framework (SMAF) may provide insight into how conservation practices affect soil quality (SQ) regionally. Therefore, we aimed to quantify SQ in a long-term (15-years) cover crop, crop rotation, and poultry litter experiment under no-tillage by using SMAF. Main effects were cropping rotations of soybean (Glycine max L.), corn (Zea mays L.), and cotton [Glycine max (L.) Merr.]. Split-block bio-cover treatments consisted of winter wheat (Triticum aestivum L.), Austrian winter pea (Pisum sativum L. sativum var. arvense), hairy vetch (Vicia villosa Roth), poultry litter, and a fallow control. Seven SQ indicators including soil pH, total organic C (TOC), bulk density (BD), soil extractable P and K, electrical conductivity (EC), and sodium adsorption ration (SAR) were scored using SMAF algorithms and investigated individually and as an overall soil quality index (SQI). Simple linear regressions were performed between SQI and crop yields. Differences (p<0.05) in SQI were found among rotations and between soil depth × bio-cover. Corn based rotations had the greatest SQI. Poultry litter had the overall greatest TOC, pH, K and BD scores, with the lowest SQI at the 0-15 cm depth and the highest SQI at the 15-30 cm depth. Reductions in SQI were linked to greater P scores. A positive regression was found between 15-30 cm soil depth SQI and cotton yield (R2= 0.48; p<0.05; n=10). Overall, SMAF can address the effects of long-term conservation practices on soil quality and can be used to develop best management practices and nutrient management strategies. |