Skip to main content
ARS Home » Pacific West Area » Riverside, California » Agricultural Water Efficiency and Salinity Research Unit » People » Devinder Sandhu

Devinder Sandhu
devinder.sandhu@usda.gov
Research Geneticist (Plants)
Devinder Sandhu

Devinder Sandhu

Agricultural Water Efficiency and
Salinity Research Unit
Research Geneticist (Plants)
US Salinity Laboratory

450 W Big Springs Road
Riverside, CA 92507
Phone:(951) 289-3627

devinder.sandhu@usda.gov

 

ARS - Publications and Projects


ARS Publications
ARS Projects

 

U.S. Salinity Laboratory Publications:

  1. Jin Q, Wang Z, Sandhu D, Chen L, Shao C, Xie S, Shang F, Wen S, Wu T, Jin H, Huang F, Liu G, Hu J, Su Q, Huang M, Zhu Q, Zhou B, Zhu L, Peng L, Liu Z, Huang J, Tian N, Liu S. 2024. miR828a-CsMYB114 module negatively regulates the biosynthesis of theobromine in Camellia sinensis. J. Agric. Food Chem. 72 (8): 4464-4475. DOI: 10.1021/acs.jafc.3c07736 (Log# 409981)
  2. Jin Q, Wang Z, Sandhu D, Chen L, Shao C, Shang F, Xie S, Huang F, Chen Z, Zhang X, Hu J, Liu G, Su X, Huang M, Liu Z, Huang J, Tian N, Liu S. 2024. mRNA-miRNA analyses reveal the involvement of CsbHLH1 and miR1446a in the regulation of caffeine biosynthesis in Camellia sinensis. Hort. Res., 11 (2): uhad282. DOI: 10.1093/hr/uhad282 (Log# 407277)
  3. Gheyi HR, Sandhu D, de Lacerda CF. 2023. Fields of the future: Pivotal role of biosaline agriculture in farming. Agriculture, 13: 1774. DOI: 10.3390/agriculture13091774 (Log# 407745)
  4. Singh V, Krause M, Sandhu D., Sekhon RS, Kaundal A. 2023. Salinity stress tolerance prediction for biomass-related traits in maize (Zea mays L.) using genome-wide markers. The Plant Genome, 16: e20385. DOI: 10.1002/tpg2.20385 (Log# 401823)
  5. Sandhu D, Pudussery MV, William M, Kaundal A, Ferreira JFS. 2023. Divergent gene expression responses to salinity stress in 16 geographically diverse spinach genotypes. ACS Agri Sci. Techol., 3(9): 795-804. DOI: 10.1021/acsagscitech.3c00149. (Log# 405265)
  6. Zhang Y, Ye X, Skaggs TH, Ferreira JFS, Chen X, Sandhu D. 2023. An advanced protocol for profiling RNA-binding proteins in Arabidopsis using plant phase extraction. Biology Methods & Protocols, 8(1): bpad016. DOI: 10.1093/biomethods/bpad016 (Log# 406834)
  7. Acharya, B R, Zhao, C, Reyes, LAR, Ferreira, JFS, & Sandhu, D. 2023. Understanding the salt overly sensitive pathway in Prunus: Identification and characterization of NHX, CIPK, and CBL genes. The Plant Genome, e20371. DOI: 10.1002/tpg2.20371 (Log# 401244)
  8. Zhang Y, Ye X, Skaggs TH, Ferreira JFS, Chen X, Sandhu D. 2023. Plant phase extraction: A method for enhanced discovery of the RNA-binding proteome and its dynamics in plants. The Plant Cell, 35(8): 2750-2772. DOI: 10.1093/plcell/koad124 (Log# 394841)
  9. Sandhu D, Pallete A, William M, Ferreira JFS, Kaundal A, & Grover KK. 2023. Salinity responses in 24 guar genotypes are linked to multigenic regulation explaining the complexity of tolerance mechanisms in planta. Crop Sci. 63: 585-597. DOI: 10.1002/csc2.20872 (Log# 396794)
  10. Ferreira JFS, Liu X, Suddarth SRP, Nguyen C, Sandhu D. 2022. NaCl Accumulation, Shoot Biomass, Antioxidant Capacity, and Gene Expression of Passiflora edulis f. Flavicarpa Deg. in Response to Irrigation Waters of Moderate to High Salinity. Agriculture. 12(11):1856. DOI: 10.3390/agriculture12111856. (Log# 398394)
  11. Chen L, Tian N, Hu M, Sandhu D, Jin Q, Gu M, Zhang X, Peng Y, Zhang J, Chen Z, Liu G, Huang M, Huang J, Liu Z and Liu S. 2022. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant (Camellia sinensis). Front. Plant Sci. 13:997778. DOI: 10.3389/fpls.2022.997778. (Log# 396394)
  12. Jin, K., N. Tian, J.F.S. Ferreira, D. Sandhu, L. Xiao, M. Gu, Y. Luo, X. Zhang, G. Liu, Z. Liu, J. Huang and S. Liu. 2022. Comparative transcriptome analysis of Agrobacterium tumefaciens reveals the molecular basis for the recalcitrant genetic transformation of Camellia sinensis L. Biomolecules. 12(5):688. doi:https://doi.org/10.3390/biom12050688.
  13. Kaundal A, Sandhu D, Singh V, Duenas M, Acharya BR, Nelson B, Ferreira JFS, Litt A. 2022. Transgenic expression of Prunus persica Salt Overly Sensitive 2 (PpSOS2) in the atsos2 mutant. ACS Agri Sci. Techol. 2 (1): 153-164. DOI: 10.1021/acsagscitech.1c00276. (Log# 381313)
  14. Acharya BR, Sandhu D., Duenas C, Duenas M, Pudussery M, Kaundal A, Ferreira JFS, Suarez DL, Skaggs T. 2022. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Scientific Reports 12, Article number 1274. DOI: 10.1038/s41598-022-05202-1. (Log# 385821)
  15. Acharya, B.R., D. Sandhu, C. Dueñas, J.F.S. Ferreira and K.K. Grover. 2022. Deciphering molecular mechanisms involved in salinity tolerance in guar (Cyamopsis tetragonoloba (L.) Taub.) using transcriptome analyses. Plants. 11(3):291. doi:10.3390/plants11030291.
  16. Suarez DL, Celis N, Ferreira JFS, Reynolds T, Sandhu D. 2021. Linking genetic determinants with salinity tolerance and ion relationships in eggplant, tomato and pepper. Scientific Reports 11, Article number 16298. DOI: 10.1038/s41598-021-95506-5. (Log# 384895)
  17. Sandhu D., Pallete A, Pudussery MV and Grover KK. 2021. Contrasting responses of guar genotypes shed light on multiple component traits of salinity tolerance mechanisms. Agronomy 11: 1068. DOI: 10.3390/agronomy11061068. (Log# 384096)
  18. Kaundal, R., N. Duhan, B.R. Acharya, M.V. Pudussery, J.F.S. Ferreira, D.L. Suarez and D. Sandhu. 2021. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Scientific Reports 11:5210. doi:10.1038/s41598-021-84461-w.
  19. Zhao C, Sandhu D. and Ferreira, JFS. 2021. Transcript analysis of two spinach cultivars reveals the complexity of salt tolerance mechanisms. ACS Agri. Sci. Technol. 1 (2): 64-75. DOI: 10.1021/acsagscitech.0c00063. (Log# 378595)
  20. Tareq, F.S., R.R. Kotha, J.F.S. Ferreira, D. Sandhu and D.L. Luthria. 2021. Influence of Moderate-to-High Salinity on the Phytochemical Profile of Two Salinity-Tolerant Spinach Cultivars. ACS Food Sci. Technol. 1:205-214. doi:10.1021/acsfoodscitech.0c00034. 
  21. Zhao, C., D. William and D. Sandhu. 2021. Isolation and characterization of salt overly sensitive family genes in spinach. Physiologia Plantarum. 171(4):520-532. doi:10.1111/ppl.13125.
  22. Sandhu, D., A. Kuandal, B.R. Acharya, T. Forest, M.V. Pudussery, X. Liu, J.F.S. Ferreira and D.L. Suarez. 2020. Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants. Scientific Reports. 10:21087. doi:10.1038/s41598-020-78036-4.
  23. UÇGUN, K., J.F.S. Ferreira, X. Liu, J.B.S. Filho, C.F.D. Lacerda and D. Sandhu. 2020. Germination and growth of Spinach under potassium deficiency and irrigation with high-salinity water. Plants. 9(12):doi:10.3390/plants9121739.
  24. Ferreira, J.F.S., J.B.D.S. Filho, X. Liu and D. Sandhu. 2020. Spinach plants favor the absorption of K+ over Na+ regardless of salinity, and may benefit from Na+ when K+ is deficient in the soil. Plants. 9(4):507. doi:10.3390/plants9040507.
  25. Sandhu, D., M. V. Pudussery, R. Kumar, A. Pallete, P. Markly, W.C. Bridges and R.S. Sekon. 2020. Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize. Functional and Integrative Genomics. 20:261-275. doi:10.1007/s10142-019-00707-x.
  26. Thu, S.W., K.M. Rai, D. Sandhu, A. Rajangam, V.K. Balasubramanian, R.G. Palmer and V. Mendu. 2019. Mutation in a PHD-Finger Protein MS4 causes male sterility in soybean. Biomed Central (BMC) Plant Biology. 19:378. doi:10.1186/s12870-019-1979-4.
  27. Suarez, D.L., N. Celis, R.G. Anderson and D. Sandhu. 2019. Grape rootstock response to salinity, water and combined salinity and water stress. Agronomy. 9:321. doi:10.3390/agronomy9060321.
  28. Sandhu, D., M.V. Pudussery, J.F.S. Ferreira, X. Liu, A. Pallete, K.K. Grover and K. Hummer. 2019. Variable salinity responses and comparative expression of salinity response genes in woodland strawberry genotypes. Scientia Horticulturae. 254:61-69. doi:10.1016/j.scienta.2019.04.071.
  29. Kaundal, A., D. Sandhu, M. Duenas and J.F.S. Ferreira. 2019. Expression of the high-affinity K+ transporter 1 (PpHKT1) gene from almond rootstock 'Nemaguard' improved salt tolerance of transgenic Arabidopsis. PLoS One. 14(3):e0214473. doi:10.1371/journal. pone.0214473.
  30. Ferreira, J.F.S., D. Sandhu, X. Liu and J.J. Halvorson. 2018. Spinach (Spinacea oleracea, L.) response to salinity: nutritional value, physiological parameters, antioxidant capacity, and gene expression. Agriculture. 8(10):163. doi:10.3390/agriculture8100163.
  31. Sandhu, D., M.V. Pudussery, R. Kaundal, D.L. Suarez, A. Kaundal and R.S. Sekhon. 2018. Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula. Functional and Integrative Genomics. 18(2):141-153. doi:10.1007/s10142-017-0581-9.
  32. Sandhu, D., Z. Coleman, T. Atkinson, K.M. Rai and V. Mendu. 2018. Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean. Frontiers in Plant Science. 9:471. doi:10.3389/fpls.2018.00471.
  33. Grant, N., A. Mohan, D. Sandhu and K.S. Gill. 2018. Inheritance and genetic mapping of the reduced height (Rht18) gene in wheat. Plants. 7(3):58. doi:103.3390/plants7030058.
  34. Ferreira, J.F.S., V. Benedito, D. Sandhu, J.A. Marchese and S. Liu. 2018. Seasonal sesquiterpene accumulation of three elite Artemisia annua germplasms and precursor-based selection to generate high-artemisinin crosses. Frontiers in Plant Science. 9:1096. doi:10.3389/fpls.2018.01096.
  35. Sandhu, D., J. Ghosh, C. Johnson, J. Baumbach, E. Baumert, T. Cina, D.M. Grant, R.G. Palmer and M.K. Bhattacharyya. 2017. The endogenous transposable element Tgm9 is suitable for functional analyses of soybean genes and generating novel mutants for genetic improvement of soybean. PloS One. 45(8):1-14. doi:10.1371/journal.pone.0180732.
  36. Coleman, Z., J. Boelter, K. Espinosa, S. Goggi, R. G. Palmer and D. Sandhu. 2017. Isolation and characterization of aconitate hydratase 4 (Aco4) from soybean. Canadian Journal of Plant Science. 97(4):684-691. doi:10.1139/CJPS-2016-0363.
  37. Sandhu, D., M.V. Cornacchione, J.F.S. Ferreira and D.L. Suarez. 2017. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt response genes. Scientific Reports. 7:42958. doi:10.1038/srep42958.
  38. Sandhu, D., T. Atkinson, A. Noll, C. Johnson, K. Espinosa, J. Boelter, S. Abel, B.K. Dhatt, E. Singsaas, S. Sepsenwol, S. Goggi and R. Palmer. 2016. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function. Plant Science. 252:76-87. doi:10.1016/j.plantsci.2016.07.006.
  39. Baumbach, J., R.N. Pudake, C. Johnson, K. Kleinhans, A. Ollhoff, R.G. Palmer, M.K. Bhattacharyya and D. Sandhu. 2016. Transposon tagging of a male-sterility, female-sterility gene, St8, revealed that the meiotic MER3 DNA helicase activity is essential for fertility in soybean. PLoS ONE. 11(3):doi:10.1371/journal.pone.0150482.

 

Prior Works:

  1. Speth, B., Rogers, J. P., Boonyoo, N., VanMeter, A. J., Baumbach, J., Ott, A., Moore, J., Cina, T., Palmer, R., & Sandhu, D. (2015). Molecular mapping of five soybean genes involved in male-sterility, female-sterility. Genome, 58(4), 143-149. https://doi.org/10.1139/gen-2015-0044
  2. Navarro, C., Moore, J., Ott, A., Baumert, E., Mohan, A., Gill, K. S., & Sandhu, D. (2015). Evolutionary, comparative and functional analyses of the brassinosteroid receptor gene, BRI1, in wheat and tts relation to other plant genomes. PLOS ONE, 10(5), e0127544. https://doi.org/10.1371/journal.pone.0127544
  3. Espinosa, K., Boelter, J., Lolle, S., Hopkins, M., Goggi, S., Palmer, R. G., & Sandhu, D. (2015). Evaluation of spontaneous generation of allelic variation in soybean in response to sexual hybridization and stress. Can. J. Plant Sci., 95(2), 405-415. https://doi.org/10.4141/cjps-2014-324
  4. Yang, Y., Speth, B. D., Boonyoo, N., Baumert, E., Atkinson, T. R., Palmer, R. G., & Sandhu, D. (2014). Molecular mapping of three male-sterile, female-fertile mutants and generation of a comprehensive map of all known male sterility genes in soybean. Genome, 57(3), 155-160. https://doi.org/10.1139/gen-2014-0018
  5. Speth, B., Rogers, J. P., Boonyoo, N., Palmer, R. G., & Sandhu, D. (2014). Candidate gene identification for a fertility locus in soybean. J. Res., 51(1), 8-13.
  6. Reed, S., Atkinson, T., Gorecki, C., Espinosa, K., Przybylski, S., Goggi, A., Palmer, R., & Sandhu, D. (2014). Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agronomy, 4(4), 462-469. https://doi.org/10.3390/agronomy4040462
  7. Navarro, C., Yang, Y., Mohan, A., Grant, N., Gill, K. S., & Sandhu, D. (2014). Microsatellites based genetic linkage map of the Rht3 locus in bread wheat Mol. Plant Breed., 5(8), 43-46. https://doi.org/ 10.5376/mpb.2014.05.0008
  8. Raval, J., Baumbach, J., Ollhoff, A. R., Pudake, R. N., Palmer, R. G., Bhattacharyya, M. K., & Sandhu, D. (2013). A candidate male-fertility female-fertility gene tagged by the soybean endogenous transposon, Tgm9. Funct. Integr. Genomics, 13(1), 67-73. https://doi.org/10.1007/s10142-012-0304-1
  9. Ott, A., Yang, Y., Bhattacharyya, M., Horner, H., Palmer, R., & Sandhu, D. (2013). Molecular mapping of D1, D2 and ms5 revealed linkage between the cotyledon color locus D2 and the male-sterile locus ms5 in soybean. Plants, 2(3), 441-454. https://doi.org/10.3390/plants2030441
  10. Sumit, R., Sahu, B. B., Xu, M., Sandhu, D., & Bhattacharyya, M. K. (2012). Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean [journal article]. BMC Plant Biol., 12(1), 87. https://doi.org/10.1186/1471-2229-12-87
  11. Baumbach, J., Rogers, J. P., Slattery, R. A., Narayanan, N. N., Xu, M., Palmer, R. G., Bhattacharyya, M. K., & Sandhu, D. (2012). Segregation distortion in a region containing a male-sterility, female-sterility locus in soybean. Plant Sci., 195, 151-156. https://doi.org/10.1016/j.plantsci.2012.07.003
  12. Slattery, R. A., Pritzl, S., Reinwand, K., Trautschold, B., Palmer, R. G., & Sandhu, D. (2011). Mapping eight male-sterile, female-sterile soybean mutants. Crop Sci., 51(1), 231-236. https://doi.org/10.2135/cropsci2010.06.0351
  13. Ott, A., Trautschold, B., & Sandhu, D. (2011). Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLOS ONE, 6(7), e22306. https://doi.org/10.1371/journal.pone.0022306
  14. Frasch, R. M., Weigand, C., Perez, P. T., Palmer, R. G., & Sandhu, D. (2011). Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J. Hered., 102(1), 11-16. https://doi.org/10.1093/jhered/esq100
  15. Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C., & Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean [10.1038/nature08670]. Nature, 463(7278), 178-183. https://doi.org/10.1038/nature08670
  16. Mutti, J. S., Sandhu, D., Sidhu, D., & Gill, K. S. (2010). Dynamic nature of a wheat centromere with a functional gene [journal article]. Mol. Breed., 26(2), 177-187. https://doi.org/10.1007/s11032-009-9389-1
  17. Sandhu, D., Tasma, I. M., Frasch, R., & Bhattacharyya, M. K. (2009). Systemic acquired resistance in soybean is regulated by two proteins, orthologous to Arabidopsis NPR1 [journal article]. BMC Plant Biol., 9(1), 105. https://doi.org/10.1186/1471-2229-9-105
  18. Cervantes-Martinez, I., Sandhu, D., Xu, M., Ortiz-Perez, E., Kato, K. K., Horner, H. T., & Palmer, R. G. (2009). The male sterility locus ms3 is present in a fertility controlling gene cluster in soybean. J. Hered., 100(5), 565-570. https://doi.org/10.1093/jhered/esp054
  19. Palmer, R. G., Sandhu, D., Curran, K., & Bhattacharyya, M. K. (2008). Molecular mapping of 36 soybean male-sterile, female-sterile mutants [journal article]. Theor. Appl. Genet., 117(5), 711-719. https://doi.org/10.1007/s00122-008-0812-5
  20. Sandhu, D., Alt, J. L., Scherder, C. W., Fehr, W. R., & Bhattacharyya, M. K. (2007). Enhanced oleic acid content in the soybean mutant M23 is associated with the deletion in the Fad2-1a gene encoding a fatty acid desaturase [journal article]. J. Amer. Oil Chem. Soc., 84(3), 229-235. https://doi.org/10.1007/s11746-007-1037-5
  21. Sandhu, D., Schallock, K., Rivera-Velez, N., Lundeen, P., Cianzio, S., & Bhattacharyya, M. (2005). Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. J. Hered., 96(5), 536-541. https://doi.org/10.1093/jhered/esi081
  22. Alt, J. L., Fehr, W. R., Welke, G. A., & Sandhu, D. (2005). Phenotypic and molecular analysis of oleate content in the mutant soybean line M23. Crop Sci., 45(5), 1997-2000. https://doi.org/10.2135/cropsci2004.0664
  23. Sandhu, D., Gao, H., Cianzio, S., & Bhattacharyya, M. K. (2004). Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics, 168(4), 2157-2167. https://doi.org/10.1534/genetics.104.032037
  24. Randhawa, H., Dilbirligi, M., Sidhu, D., Erayman, M., Sandhu, D., Bondareva, S., Chao, S., Lazo, G., Anderson, O., & Gustafson, J. (2004). Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics, 168(2), 677-686. https://doi.org/10.1534/genetics.104.034843
  25. Qi, L. L., Echalier, B., Chao, S., Lazo, G. R., Butler, G. E., Anderson, O. D., Akhunov, E. D., Dvorák, J., Linkiewicz, A. M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C. E., Greene, R. A., Kantety, R., La Rota, C. M., Munkvold, J. D., Sorrells, S. F., Sorrells, M. E., Dilbirligi, M., Sidhu, D., Erayman, M., Randhawa, H. S., Sandhu, D., Bondareva, S. N., Gill, K. S., Mahmoud, A. A., Ma, X. F., Miftahudin, Gustafson, J. P., Conley, E. J., Nduati, V., Gonzalez-Hernandez, J. L., Anderson, J. A., Peng, J. H., Lapitan, N. L., Hossain, K. G., Kalavacharla, V., Kianian, S. F., Pathan, M. S., Zhang, D. S., Nguyen, H. T., Choi, D. W., Fenton, R. D., Close, T. J., McGuire, P. E., Qualset, C. O., & Gill, B. S. (2004). A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 168(2), 701-712. https://doi.org/10.1534/genetics.104.034868
  26. Peng, J. H., Zadeh, H., Lazo, G. R., Gustafson, J. P., Chao, S., Anderson, O. D., Qi, L. L., Echalier, B., Gill, B. S., Dilbirligi, M., Sandhu, D., Gill, K. S., Greene, R. A., Sorrells, M. E., Akhunov, E. D., Dvorák, J., Linkiewicz, A. M., Dubcovsky, J., Hossain, K. G., Kalavacharla, V., Kianian, S. F., Mahmoud, A. A., Miftahudin, Conley, E. J., Anderson, J. A., Pathan, M. S., Nguyen, H. T., McGuire, P. E., Qualset, C. O., & Lapitan, N. L. V. (2004). Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics, 168(2), 609-623. https://doi.org/10.1534/genetics.104.034793
  27. Munkvold, J. D., Greene, R. A., Bermudez-Kandianis, C. E., La Rota, C. M., Edwards, H., Sorrells, S. F., Dake, T., Benscher, D., Kantety, R., Linkiewicz, A. M., Dubcovsky, J., Akhunov, E. D., Dvorák, J., Miftahudin, Gustafson, J. P., Pathan, M. S., Nguyen, H. T., Matthews, D. E., Chao, S., Lazo, G. R., Hummel, D. D., Anderson, O. D., Anderson, J. A., Gonzalez-Hernandez, J. L., Peng, J. H., Lapitan, N., Qi, L. L., Echalier, B., Gill, B. S., Hossain, K. G., Kalavacharla, V., Kianian, S. F., Sandhu, D., Erayman, M., Gill, K. S., McGuire, P. E., Qualset, C. O., & Sorrells, M. E. (2004). Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics, 168(2), 639-650. https://doi.org/10.1534/genetics.104.034819
  28. Linkiewicz, A. M., Qi, L. L., Gill, B. S., Ratnasiri, A., Echalier, B., Chao, S., Lazo, G. R., Hummel, D. D., Anderson, O. D., Akhunov, E. D., Dvorák, J., Pathan, M. S., Nguyen, H. T., Peng, J. H., Lapitan, N. L., Miftahudin, Gustafson, J. P., La Rota, C. M., Sorrells, M. E., Hossain, K. G., Kalavacharla, V., Kianian, S. F., Sandhu, D., Bondareva, S. N., Gill, K. S., Conley, E. J., Anderson, J. A., Fenton, R. D., Close, T. J., McGuire, P. E., Qualset, C. O., & Dubcovsky, J. (2004). A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics, 168(2), 665-676. https://doi.org/10.1534/genetics.104.034835
  29. Erayman, M., Sandhu, D., Sidhu, D., Dilbirligi, M., Baenziger, P. S., & Gill, K. S. (2004). Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res., 32(12), 3546-3565. https://doi.org/10.1093/nar/gkh639
  30. Dilbirligi, M., Erayman, M., Sandhu, D., Sidhu, D., & Gill, K. S. (2004). Identification of wheat chromosomal regions containing expressed resistance genes. Genetics, 166(1), 461-481. https://doi.org/10.1534/genetics.166.1.461
  31. Santra, D. K., Sandhu, D., Tai, T., & Bhattacharyya, M. K. (2003). Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region. Funct. Integr. Genomic., 3(4), 153-159. https://doi.org/10.1007/s10142-003-0092-8
  32. Sandhu, D., Sidhu, D., & Gill, K. S. (2002). Identification of expressed sequence markers for a major gene-rich region of wheat chromosome group 1 using RNA fingerprinting-differential display. Crop Sci., 42(4), 1285-1290. https://doi.org/10.2135/cropsci2002.1285
  33. Sandhu, D., & Gill, K. S. (2002). Structural and functional organization of the'1S0. 8 gene-rich region'in the Triticeae. Plant Mol. Biol., 48(5-6), 791-804. https://doi.org/10.1023/A:1014876409166
  34. Sandhu, D., & Gill, K. S. (2002). Gene-containing regions of wheat and the other grass genomes. Plant Physiol., 128(3), 803-811. https://doi.org/10.1104/pp.010745
  35. Rostoks, N., Park, Y.-J., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B. A., SanMiguel, P. J., Jiang, Z., Brueggeman, R., & Sandhu, D. (2002). Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomic., 2(1), 51-59. https://doi.org/10.1007/s10142-002-0055-5
  36. Sandhu, D., Champoux, J. A., Bondareva, S. N., & Gill, K. S. (2001). Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics, 157(4), 1735-1747. https://doi.org/10.1093/genetics/157.4.1735
  37. Li, L., Arumuganathan, K., Rines, H., Phillips, R., Riera-Lizarazu, O., Sandhu, D., Zhou, Y., & Gill, K. (2001). Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theor. Appl. Genet., 102(5), 658-663. https://doi.org/10.1007/s001220051694
  38. Gill, K. S., & Sandhu, D. (2001). Candidate-gene cloning and targeted marker enrichment of wheat chromosomal regions using RNA fingerprinting-differential display. Genome, 44(4), 633-639. https://doi.org/10.1139/g01-047
  39. Sidhu, P., Sandhu, D., Sekhon, R., & Sarlach, R. (2000). Combining ability studies involving male sterile lines in pigeonpea. J. Res., 37, 1-8.
  40. Sukhchain, Sandhu, D., & Saini, G. (1997). Inter-relationships among cane yield and commercial cane sugar and their component traits in autumn plant crop of sugarcane. Euphytica, 95(1), 109-113. https://doi.org/10.1023/A:1002962131707
  41. Sidhu, P., Verma, M., Sarlach, R., Sekhon, R., & Sandhu, D. (1996). Identification of superior parents and hybrids for improving pigeonpea. Crop Improv. , 23, 66-70.
  42. Sandhu, D., & Chahal, G. (1995). Prediction of F1 yield from parental performance in upland cotton. Crop Improv., 22, 55-60.