Skip to main content
ARS Home » Southeast Area » New Orleans, Louisiana » Southern Regional Research Center » Food and Feed Safety Research » Research » Research Project #430859

Research Project: Genetic and Environmental Factors Controlling Aflatoxin Biosynthesis

Location: Food and Feed Safety Research

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

Vibrio gazogenes-dependent disruption of aflatoxin biosynthesis in Aspergillus flavus: the connection with endosomal uptake and hyphal morphogenesis Reprint Icon - (Peer Reviewed Journal)
Jesmin, R., Cary, J.W., Lebar, M.D., Majumdar, R., Gummadidala, P.M., Dias, T., Chandler, S., Basu, P., Decho, A.W., Keller, N.P., Chanda, A. 2023. Vibrio gazogenes-dependent disruption of aflatoxin biosynthesis in Aspergillus flavus: the connection with endosomal uptake and hyphal morphogenesis. Frontiers in Microbiology. 14:1208961. https://doi.org/10.3389/fmicb.2023.1208961.

Authentication of Aspergillus parasiticus strains in the genome database of the National Center for Biotechnology Information Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K. 2021. Authentication of Aspergillus parasiticus strains in the genome database of the National Center for Biotechnology Information. BMC Research Notes. 14:111. https://doi.org/10.1186/s13104-021-05527-6.

Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard® Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K., Chang, T.D., Katoh, K. 2020. Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard®. Letters in Applied Microbiology. 72:509-516. https://doi.org/10.1111/lam.13433.

Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review Reprint Icon - (Review Article)
Uka, V., Cary, J.W., Lebar, M.D., Puel, O., De Saeger, S., Diana Di Mavungu, J. 2020. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Comprehensive Reviews in Food Science and Food Safety. 19(6):2797-2842. https://doi.org/10.1111/1541-4337.12638.

Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Luis, J.M., Carbone, I., Payne, G.A., Bhatnagar, D., Cary, J.W., Moore, G.G., Lebar, M.D., Wei, Q., Mack, B., Ojiambo, P.S. 2020. Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus. Mycologia. 112(5):908-920. https://doi.org/10.1080/00275514.2020.1800361.

Prevalence of NRRL21882-like (Afla-Guard®) Aspergillus flavus on sesame seeds grown in research fields in the Mississippi Delta Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K., Scharfenstein, L.L., Abbas, H.K., Bellaloui, N., Accinelli, C., Ebelhar, M.W. 2020. Prevalence of NRRL21882-like (Afla-Guard®) Aspergillus flavus on sesame seeds grown in research fields in the Mississippi Delta. Biocontrol Science and Technology. 30:1090-1099. https://doi.org/10.1080/09583157.2020.1791798.

Identification of AflR binding sites in the genome of Aspergillus flavus by ChIP-Seq Reprint Icon - (Peer Reviewed Journal)
Kong, Q., Chang, P.-K., Li, C., Hu, Z., Zheng, M., Sun, Q., Shan, S. 2020. Identification of AflR binding sites in the genome of Aspergillus flavus by ChIP-Seq. The Journal of Fungi. 6:52. https://doi.org/10.3390/jof6020052.

Biosynthesis of conidial and sclerotial pigments in Aspergillus species Reprint Icon - (Review Article)
Chang, P.-K., Cary, J.W., Lebar, M.D. 2020. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Applied Microbiology and Biotechnology. 104:2277-2286. https://doi.org/10.1007/s00253-020-10347-y.

rmtA-dependent transcriptome and its role in secondary metabolism, environmental stress, and virulence in Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Satterlee, T., Entwistle, S., Yin, Y., Cary, J.W., Lebar, M.D., Losada, L., Calvo, A.M. 2019. rmtA-dependent transcriptome and its role in secondary metabolism, environmental stress, and virulence in Aspergillus flavus. G3, Genes/Genomes/Genetics. 9(12):4087-4096. https://doi.org/10.1534/g3.119.400777.

The secondary metabolism of Aspergillus flavus: small molecules with diverse biological function - (Abstract Only)

Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: proteome analysis based on TMT Reprint Icon - (Peer Reviewed Journal)
Wang, P., Chang, P.-K., Kong, Q., Shan, S., Wei, Q. 2019. Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: proteome analysis based on TMT. International Journal of Food Microbiology. 310:108313. https://doi.org/10.1016/j.ijfoodmicro.2019.108313.

Genome-wide nucleotide variation distinguishes Aspergillus flavus from Aspergillus oryzae and helps to reveal origins of atoxigenic A. flavus biocontrol strains Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K. 2019. Genome-wide nucleotide variation distinguishes Aspergillus flavus from Aspergillus oryzae and helps to reveal origins of atoxigenic A. flavus biocontrol strains. Journal of Applied Microbiology. 127:1511-1520. https://doi.org/10.1111/jam.14419.

Genome sequence of an Aspergillus flavus CA14 strain that is widely used in gene function studies Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K., Scharfenstein, L.L., Mack, B.M., Hua, S.T. 2019. Genome sequence of an Aspergillus flavus CA14 strain that is widely used in gene function studies. Microbiology Resource Announcements. 8(33):e00837-19. https://doi.org/10.1128/MRA.00837-19.

Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K., Scharfenstein, L.L., Mack, B.M., Wei, Q., Gilbert, M.K., Lebar, M.D., Cary, J.W. 2019. Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment. Applied Microbiology and Biotechnology. 103:4889-4897. https://doi.org/10.1007/s00253-019-09820-0.

The aspergillic acid biosynthetic gene cluster predicts neoaspergillic acid production in Aspergillus section Circumdati Reprint Icon - (Peer Reviewed Journal)
Lebar, M.D., Mack, B.M., Carter-Wientjes, C.H., Gilbert, M.K. 2019. The aspergillic acid biosynthetic gene cluster predicts neoaspergillic acid production in Aspergillus section Circumdati. World Mycotoxin Journal. 12(3):213-222. https://doi.org/10.3920/WMJ2018.2397.

Aspergillus flavus secondary metabolites and their roles in fungal development, survival and virulence - (Abstract Only)

The Aspergillus flavus rtfA gene regulates plant and animal pathogenesis and secondary metabolism Reprint Icon - (Peer Reviewed Journal)
Lohmar, J.M., Puel, O., Cary, J.W., Calvo, A.M. 2019. The Aspergillus flavus rtfA gene regulates plant and animal pathogenesis and secondary metabolism. Applied and Environmental Microbiology. 85(6):e02446-18. https://doi.org/10.1128/AEM.02446-18.

Developmental and metabolic processes impacted in Aspergillus flavus during maize kernel infection under various environmental conditions - (Abstract Only)

Monitoring metabolite production of aflatoxin biosynthesis by orbitrap fusion mass spectrometry and a D-optimal mixture design method Reprint Icon - (Peer Reviewed Journal)
Xie, H., Wang, X., Zhang, L., Wang, T., Zhang, W., Jiang, J., Chang, P.-K., Chen, Z.-Y., Bhatnagar, D., Zhang, Q., Li, P. 2018. Monitoring metabolite production of aflatoxin biosynthesis by orbitrap fusion mass spectrometry and a D-optimal mixture design method. Analytical Chemistry. 90:14331-14338. https://doi.org/10.1021/acs.analchem.8b03703.

The transcriptional regulator Hbx1 affects the expression of thousands of genes in the aflatoxin-producing fungus Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Cary, J.W., Entwistle, S., Satterlee, T., Mack, B.M., Gilbert, M.K., Chang, P.-K., Scharfenstein, L.L., Yin, Y., Calvo, A. 2019. The transcriptional regulator Hbx1 affects the expression of thousands of genes in the aflatoxin-producing fungus Aspergillus flavus. G3, Genes/Genomes/Genetics. 9(1):167-178. https://doi.org/10.1534/g3.118.200870.

The bZIP transcription factor Afap1 mediates the oxidative stress response and aflatoxin biosynthesis in Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Guan, X., Zhao, Y., Liu, X., Shang, B., Xing, F., Zhou, L., Wang, Y., Zhang, C., Bhatnagar, D., Liu, Y. 2019. The bZIP transcription factor Afap1 mediates the oxidative stress response and aflatoxin biosynthesis in Aspergillus flavus. Revista Argentina de Microbiología. 51(4):292-301. https://doi.org/10.1016/j.ram.2018.07.003.

Toxins, pathogens, and foods: challenges and opportunities for public health Reprint Icon - (Proceedings)
Voss, K.A., Asakura, H., Cary, J.W., Suzuki, T. 2018. Toxins, pathogens, and foods: challenges and opportunities for public health. Epilogue to the Proceedings of the 12th International Symposium of the Joint Expert Panel on Toxic Microorganisms, United States–Japan Program on Development and Utilization of Natural Resources. Food Safety. 6(2):107-108. https://doi.org/10.14252/foodsafetyfscj.2018004.

Environmental interactions that influence secondary metabolism and development in the saprophytic crop pathogen Aspergillus flavus - (Abstract Only)

Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control Reprint Icon - (Review Article)
Ojiambo, P.S., Battilani, P., Cary, J.W., Blum, B.H., Carbone, I. 2018. Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. Phytopathology. 108:1024-1037. https://doi.org/10.1094/PHYTO-04-18-0134-RVW.

Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70 Reprint Icon - (Peer Reviewed Journal)
Gilbert, M.K., Mack, B.M., Moore, G.G., Downey, D.L., Lebar, M.D., Joarder, V., Losada, L., Yu, J., Nierman, W.C., Bhatnagar, D. 2018. Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70. PLoS One. 13(7):e0199169. https://doi.org/10.1371/journal.pone.0199169.

Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus - (Peer Reviewed Journal)
Lebar, M.D., Cary, J.W., Majumdar, R., Carter-Wientjes, C.H., Mack, B.M., Wei, Q., Uka, V., De Saeger, S., Diana Di Mavungu, J. 2018. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genetics and Biology. 116:14-23.

Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K., Zhang, Q., Scharfenstein, L.L., Mack, B.M., Yoshimi, A., Miyazawa, K., Abe, K. 2018. Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection. Applied Microbiology and Biotechnology. 102:5209-5220. https://doi.org/10.1007/s00253-018-9012-7.

The mycotox charter: increasing awareness of, and concerted action for, minimizing mycotoxin exposure worldwide Reprint Icon - (Review Article)
Logrieco, A.F., David Miller, J., Eskola, M., Krska, R., Ayalew, A., Bandyopadhyay, R., Battilani, P., Bhatnagar, D., Chulze, S., De Saeger, S., Li, P., Perrone, G., Poapolathep, A., Rahayu, E.S., Shephard, G.S., Stepman, F., Zhang, H., Leslie, J.F. 2018. The mycotox charter: increasing awareness of, and concerted action for, minimizing mycotoxin exposure worldwide. Toxins. 10(4):149. https://doi.org/10.3390/toxins10040149.

Aspergillus flavus secondary metabolites: more than just aflatoxins Reprint Icon - (Review Article)
Cary, J.W., Gilbert, M.K., Lebar, M.D., Majumdar, R., Calvo, A.M. 2018. Aspergillus flavus secondary metabolites: more than just aflatoxins. Food Safety. 6(1):7-32. https://doi.org/10.14252/foodsafetyfscj.2017024.

RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels Reprint Icon - (Peer Reviewed Journal)
Gilbert, M.K., Majumdar, R., Rajasekaran, K., Chen, Z.-Y., Wei, Q., Sickler, C.M., Lebar, M.D., Cary, J.W., Frame, B.R., Wang, K. 2018. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta. 247:1465–1473. https://doi.org/10.1007/s00425-018-2875-0.

MycoKey round table discussions of future directions in research on chemical detection methods, genetics and biodiversity of mycotoxins Reprint Icon - (Peer Reviewed Journal)
Leslie, J.F., Lattanzio, V., Audenaert, K., Battilani, P., Cary, J.W., Chulze, S.N., De Saeger, S., Gerardino, A., Karlovsky, P., Liao, Y.-C., Maragos, C.M., Meca, G., Medina, A., Moretti, A., Munkvold, G., Mule, G., Njobeh, P., Pecorelli, I., Perrone, G., Pietri, A., Palazzini, J.M., Proctor, R.H., Rahayu, E.S., Ramirez, M.L., Samson, R., Stroka, J., Sulyok, M., Sumarah, M., Waalwijk, C., Zhang, Q., Zhang, H., Logrieco, A.F. 2018. MycoKey round table discussions of future directions in research on chemical detection methods, genetics and biodiversity of mycotoxins. Toxins. 10(3):109. https://doi.org/10.3390/toxins10030109.

The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels - (Peer Reviewed Journal)
Majumdar, R., Lebar, M.D., Mack, B.M., Minocha, R., Minocha, S., Carter-Wientjes, C.H., Sickler, C.M., Rajasekaran, K., Cary, J.W. 2018. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels. Frontiers in Plant Science. 9:317. https://doi.org/10.3389/fpls.2018.00317.

Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels Reprint Icon - (Peer Reviewed Journal)
Gilbert, M.K., Medina, A., Mack, B.M., Lebar, M.D., Rodriguez, A., Bhatnagar, D., Magan, N., Obrian, G., Payne, G. 2018. Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels. Toxins. 10(1):5. https://doi.org/10.3390/toxins10010005.

The 14-3-3 protein homolog ArtA regulates development and secondary metabolism in the opportunistic plant pathogen Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Ibarra, B.A., Lohmar, J.M., Satterlee, T., McDonald, T., Cary, J.W., Calvo, A.M. 2018. The 14-3-3 protein homolog ArtA regulates development and secondary metabolism in the opportunistic plant pathogen Aspergillus flavus. Applied and Environmental Microbiology. 84(5):e02241-17. https://doi.org/10.1128/AEM.02241-17.

Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production - (Peer Reviewed Journal)
Medina, A., Gilbert, M.K., Mack, B.M., OBrian, G.R., Rodriguez, A., Bhatnagar, D., Payne, G., Magan, N. 2017. Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production. International Journal of Food Microbiology. 256:36-44.

Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites - (Peer Reviewed Journal)
Chang, P.-K., Scharfenstein, L.L., Li, R.W., Arroyo-Manzanares, N., De Saeger, S., Diana Di Mavungu, J. 2017. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology. 104:29-37.

Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites - (Other)
Chang, P.-K., Scharfenstein, L.L., Mack, B.M., Li, R.W. 2017. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites. National Center for Biotechnology Information (NCBI). Accession: SRP082149.

Effect of water activity, temperature, and carbon dioxide on the Aspergillus flavus transcriptome and aflatoxin B1 production - (Other)
Gilbert, M.K., Medina-Vaya, A., Mack, B.M., Lebar, M.D., Rodriguez, A., Bhatnagar, D., Magan, N., Obrian, G., Payne, G. 2017. Effect of water activity, temperature, and carbon dioxide on the Aspergillus flavus transcriptome and aflatoxin B1 production. National Center for Biotechnology Information (NCBI). Accession: PRJNA380582.

Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance - (Peer Reviewed Journal)
Chalivendra, S.C., DeRobertis, C., Chang, P.-K., Damann, K.E. 2017. Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance. Molecular Plant-Microbe Interactions. 30(5):361-373.