Author
Anderson, Martha | |
HAIN, C. - Collaborator | |
Gao, Feng | |
Yang, Yun | |
Kustas, William - Bill |
Submitted to: Meeting Abstract
Publication Type: Abstract Only Publication Acceptance Date: 4/3/2015 Publication Date: 5/3/2015 Citation: Anderson, M.C., Hain, C., Gao, F.N., Yang, Y., Kustas, W.P. 2015. Multi-scale satellite assessment of water availability and agricultural drought: from field to global scales. Meeting Abstract. 2015 [CD-Com]. Interpretive Summary: Given growing pressures on freshwater resources due to increasing populations, evolving landuse and changing climate, there is a need for timely information on water availability and drought over a wide spectrum of spatial scales: from individual farm fields to continental and global scales. To support these monitoring needs, satellite retrievals of land-surface temperature (LST) derived from thermal infrared (TIR)imagery have demonstrated significant value for multi-scale mapping of surface moisture conditions, consumptive water use (or evapotranspiration; ET) and vegetation health. In land-surface modeling, TIR imagery can serve as an effective substitute for precipitation data, providing much-needed water information in data-poor regions of the world. Technical Abstract: This paper discusses a multi-scale remote sensing modeling system that fuses flux assessments generated with TIR imagery collected by multiple satellite platforms to estimate daily surface fluxes from field to global scales. The Landsat series of polar orbiting systems has collected TIR imagery at 60-100 m resolution (8-16 day revisit) since the 1980s, providing spatiotemporal capabilities for monitoring historical and realtime ET and vegetation Stress/drought globally at the scale of human management – nominally, the field scale. Recent experiments have demonstrated that the temporal sampling of high resolution TIR imaging systems can be further enhanced by fusing lower spatial (1 km) but higher temporal resolution ET retrievals using TIR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments (1 km; approximately daily) and from geostationary (GEO) weather satellites (3-10 km; 15 minute intervals). We describe implementations of a prototype Landsat-MODIS-GEO ET data fusion over agricultural and natural landscapes under rainfed and irrigated water management, with societal benefits in the areas of food and water security. |