Skip to main content
ARS Home » Northeast Area » Wyndmoor, Pennsylvania » Eastern Regional Research Center » Dairy and Functional Foods Research » Research » Publications at this Location » Publication #388195

Research Project: New Bioactive Dairy Products for Health-Promoting Functional Foods

Location: Dairy and Functional Foods Research

Title: Cranberry arabino-xyloglucan and pectic oligosaccharides induce Lactobacillus growth and short-chain fatty acid production

Author
item Hotchkiss, Arland
item Renye, John
item White, Andre
item Nunez, Alberto
item Guron, Giselle
item Chau, Hoa - Rose
item Simon, Stefanie
item McLemore, Clayton
item RASTALL, ROBERT - University Of Reading
item KHOO, CHRISTINA - Ocean Spray Cranberry

Submitted to: Microorganisms
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 6/27/2022
Publication Date: 7/3/2022
Citation: Hotchkiss, A.T., Renye Jr, J.A., White, A.K., Nunez, A., Guron, G.P., Chau, H.K., Simon, S., Mclemore, C.A., Rastall, R., Khoo, C. 2022. Cranberry arabino-xyloglucan and pectic oligosaccharides induce Lactobacillus growth and short-chain fatty acid production. Microorganisms. https://doi.org/10.3390/microorganisms10071346.
DOI: https://doi.org/10.3390/microorganisms10071346

Interpretive Summary: Cranberries are considered a healthy food consumed as a juice, dried in salads and baked goods, or as a sauce, yet more data is needed to support health claims for this fruit. Previously, researchers in Wyndmoor, PA patented the structure of carbohydrates that blocked the adhesion of the pathogenic bacteria that cause urinary tract infections. These researchers have now described in detail the structural composition of cranberry carbohydrates that induce the growth and activity of health-promoting gut bacteria. Eighty-six dairy product bacterial strains in the USDA culture collection were screened for their ability to grow on these cranberry carbohydrates. Ten of these bacterial strains not only grew on the cranberry carbohydrates but also produced metabolites that promote a healthy gut. These new bacterial strains have the potential to serve as functional food ingredients for a healthy gut.

Technical Abstract: Numerous health benefits have been reported from the consumption of cranberry-derived products containing proanthocyanidins, and recent studies have identified bioactive arabino-xyloglucan oligosaccharides and oligogalacturonic acids from cranberry pulp. This study aimed to further characterize cranberry xyloglucan and new pectic oligosaccharide structures from the pectinase-treated pulp extract, and measure the growth and short-chain fatty acid production of 86 Lactobacillus strains using a cranberry oligosaccharide fraction as the carbon source. Cranberry pectic oligosaccharides were rhamnogalacturonan I structures which were methyl-esterified, acetylated with arabinogalacto-oligosaccharide side chains and a 4,5-unsaturated function at their non-reducing ends, which suggested they would have prebiotic activity. Ten Lactobacillus strains reached a final culture density ('OD) = 0.50 after 24 h incubation at 32°C compared to control strain L. plantarum ATCC BAA 793. All strains produced lactic, acetic, and propionic acids, but 3 strains did not produce butyric acid. The ability to metabolize cranberry oligosaccharides is strain specific, with some strains having the potential to be probiotics. This is the first study to demonstrate that several Lactobacillus species, other than L. plantarum, can utilize cranberry oligosaccharides as potential prebiotics. Mixed culture fecal fermentations demonstrated that acetate, propionate and butyrate levels increased when a cranberry arabino-xyloglucan enriched preparative HPLC fraction was used yet no bacterial class growth was observed following FISH analysis.